
AD-AOB1 44B CARNEGIE-MELLON W4NIV PITTSBURGH PA DEPT OP COMPUTER -ECF/G 12/1
GE:OETRIC TRANSFORMS FOR FAST GEOMETRIC 

ALGORITHMS U 7-C

DEC 79 K 0 BROWN N00014-76-C-0370

UNCLASSIFIED CML-CS-80101

llhlhfhflhmlhm
EElllhEEElllEE
EllEllElhElhlE
EIIIIIIIIIIIIu
llEEllhllElhIl
m||hE|hh|h|hhhI

mEEEE~~h~hhl



122

BIH '' §40 f2.0

I Jil -25 111.64___

MICR~OCOPY RESOLUTION TEST CH*T
NATIONAL BUREAU OF tANOARDS-1963-4



Gqmtric Tropiforms fOr Fast,
1Georneti Altorithm

24 December 1079

&T

DEPARTMENT
of

COMPUTER SCIENCE

Carnegie*MeIlon Univers"t
80 3 50



DISCLAIMER NOTICE
7

/

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

..



Geometric Transforms for Fast Geometric Algorithms

Kevin 0. Brown

24 December 1979

Department of Computer Science
Carnegie-Meolon University

Pittsburgh, Pa. 15213

Copyright (C) 19792 Kevin Q. Brown

Submitted to Carnegie-Mellon University in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

This research was partially supported hy the Oftice. of Naval Research under
contract number NOOO I 4-76-C-03 70.

I Octurneit hase ba appro

dlstgbugo Is Urfliijta4



24 December 1979. Geometric Transforms PAMS I

k BSTRACT

% any computational problems are Inherently geometrical in nature. For example,

cluster analysis involves construction of convex hulls of sets of points, LSI artwork

analysis requires a test for intersection of sets of line segments, computer graphics

involves hidden line elimination, and even linear programming can be expressed In

terms of intersection of half-spaces. As larger geometric problems are solved on

the computer, the need grows for faster algorithms to solve them. The topic of this

thesis is the use of geometric transforms as algorithmic tools for constructing fast

geometric algorithms. We describe several gbometric problems whose solutions

Illustrate the use of geometric transforms. These include fast algorthms for

Intersecting half-spaces, constructing Voronol dligrams, and computing the

Euclidean diameter of a set of points. For each of the major transforms we Include a

set of heuristics to enable the reader to use geometric transforms to solve his own

problems.
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1. Introduction

Many computational problems are inherently geometrical in nature. For example,

cluster analysis involves construction of convex hulls of points, LSI artwork analysis

requires a test for Intersection of sets of line segments, computer graphics Involves

hidden line elimination, and even linear programming can be expressed In'terms of

intersection of half-spaces. As larger geometric problems are solved on the

computer,. grows for faster algorithms to solve them. To obtain fast geometric

algorithms a set of tools and techniques has been developed that takes advantage

of the structure provided by the geometry. This discipline is known as

Computational Geometry. In the following sections we first survey the previous work

in computational geometry and then outline the contributions of this thesis.

1.1. History of Computational Goomotry

Geometry has been studied for thousands of years but only recently has it been

recast in computational form. Shamos [91] describes the history of geometry from

the perspective of a computer scientist. Here we will consider only the history of

computational geometry. There are several problem areas to which much research

has been devoted -- construction of convex hulls, intersection problems,

closest-point problems, and geometric searching problems. In this section we

summarize the major results In each of these areas and also a number of topics that

do not fit into these categories.

1.1.1. Convex Hulls

The convex hull of a set of points is a fundamental geometrical structure that

arises In a multitude of different problems in the literature and this thesis.

Mathematics texts define the convex hull of a set of points S as the smallest

convex set that contains all of the points of S. This definition Is fine for proving

theorems but it does not help us design a fast algorithm.

In 1970 Chand and Kapur (25] produced a convex hull algorithm for N points In

K-space. They applied a procedure called "giftwrapping" to obtain a good (but not
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Figure 1-1: Convex hull of a planar set of points.

optimal) algorithm. Graham [48] presented an O(N log N) time planar algorithm in

1972. This is optimal, in the worst-case sense, because an algorithm that

constructs a convex hull can be used to sort [01]. (If we require only the vertices

of the convex hull, then we can no longer use a convex hull algorithm to sort.

Nevertheless, Yao [103] has proven that f2(N log N) time is still required in the worst

case when only quadratic functions of the input are allowed.) Jarvis

[54] subsequently applied giftwrapping to the planar problem to obtain an O(VN)

time algorithm where V is the number of vertices on the hull. If V is less than

O(Iog N) then Jarvis' algorithm is faster than Graham's. (Preparata [81] later refined

Graham's result by constructing an O(N log N) time real-time planar convex hull

algorithm. Rather than operating on all N points collectively, this algorithm updates

the hull in O(Iog N) time after each point is read.) Preparata and Hong [83] then

solved the three-dimensional convex hull problem in O(N log N) time. In four

dimensions, however, there is an fI(N2 ) lower bound because the convex hull can

have e(N 2 ) edges ([49], p.193).

The lower bounds above apply only to the worst-case. If the expected number of

points on the convex hull is sublinear, then faster expected-time algorithms are

possible. Floyd [40] and Eddy [39] independently discovered a planar convex hull

algorithm with O(N) expected-time when the N points are drawn from a uniform



24 December 1979. Geometric Transforms PAGE

distribution over a convex region. Bentley and Shamos [16] improved that result to

include any distribution for which the expected number of points on the hull is O(NP)

for some p < 1. Furthermore, their result extends to O(N) expected-time In

three-space while maintaining an O(N log N) worst-case time. For K dimensions we

may still construct the convex hull in O(N) expected-time if the K coordinates are

drawn from independent distributions. In this case the expected values for the

number of maxima and the square of the number of maxima are only 0(IogK'IN) [10]

and 0(log2 (K'l)N) [30], respectively. Even though the worst-case number of

edges, faces, etc. of a K-dimensional convex hull of N vertices grow exponentially

with K, the expected size of the convex hull is still only a power of log N.

1.1.2. Intersection Problems

Intersection problems have also received a great deal of attention in recent

years. They occur in a variety of areas including computer graphics, architectural

data bases, printed circuit design, and even linear programming [94, 12, 2, 85].

Shames and Hoey [90, 91) constructed several fundamental intersection algorithms

including a linear time intersection of two convex polygons, which is applied

recursively in their O(N log N) time algorithm for intersecting N half-planes. Hoey's

O(N log N) time algorithm [94] to determine if any two of N line segments intersect

has been extended by Bentley and Ottmann [12] to report all K intersecting pairs in

O(N log N + K log N) time. (Brown (24] has reduced the storage requirement of

Bentley and Ottmann's algorithm from O(N + K) to O(N).) If all segments are either

horizontal or vertical, then the number of intersections K can be counted in

O(N log N) time and reported in O(N log N + K) time. (See [4, 19, 98] for rectangle

intersection problems and algorithms.) Finally, Zolnowsky [106] and Preparata and

Muller [84] have applied geometric transforms to produce thrve algorithms for

intersecting N three-dimensional half-spaces in O(N log N) time.
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1.1.3. Closest Point Problems

Closest point problems arise in cluster analysis, pattern recognition, and, In

particular, construction of minimum spanning trees [93, 3]. Dobkin and Lipton

(34,.35] used an interesting duality transform to prove an [l(N log N) time lower

bound for the element-uniqueness problem1 under a model of computation that

allows ((,=,>) comparisons of linear functions of the input.2 This proves an 1)(N log

N) time lower bound for the problem of finding the two closest of N points. Their

model of computation, however, allows only comparisons between linear functions of

the input. With a stronger model of comp~utation algorithms faster than O(N log N)

time are possible. Fortune and Hopcroft [41) showed that if the floor function is

allowed, the two closest points can be found in O(N log log N) time in the worst

case. Previously, Rabin [86]and Yuval [104] had given O(N) expected-time

algorihms for the K-dimensional closest pair problem.

Meanwhile, Bentley (and others) worked on multi-dimensional nearest neighbor

problems [9, 11, 14, 17] and ie invented a data structure called a K-D tree to

solve them efficiently. Bentley's thesis [3] employed a strategy called

multi-dimensional divide-and-conquer with which he obtained the first

sub-quadratic algorithms for several multi-dimensional closest point problems. His

thesis Is also a good source for learning about algorithm design -- rather than simply

presenting the finished product he displays the algorithm design process and at the

conclusion presents a list of heuristics to use in designing algorithms.

Shames and Hoey [89, 91, 93) created an O(N log N) time divide-and-conquer

algorithm for constructing a Voronoi diagram of N planar points. A Voronol diagram

1 The element uniqjeness problem is to determine whether all N elements of an unordered multiset are unique.
21f the allowed (<,=,>) comparis.ns are restricted to be between the N elements themselves -- no linear

functions of the input -- then an n (N log N) time lower bound is easy to prove. This is because no oidering of the
N elements other than a total ordering can guarantee that no two elements are equal. Construction of a total
ordering, however, requires a sort, which costs n(N log N) time.
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(to be described in detail in Section 4.1) contains all of the necessary proximity

information to solve efficiently a number of c:osest-point problems including

construction of a Euclidean minimal spanning tree, a proper straight-line triangulation

of the N points, and the nearest neighbor problem. Bentley, Weide, and Yao

(18] have extended the techniques of Weide's thesis [993 to obtain a linear

expected-time algorithm for constructing a planar Voronoi diagram. The only

conditions are that the probability density of the underlying distribution be bounded

both above by a constant and (below) away from zero over some finite region.

Bentley and Friedman [8) describe a heuristic solution for a minimum spanning

tree algorithm in multi-dimensional Euclidean space and Yao [102] has constructed

provably subquadratic worst-case MST (and related) algorithms for the L1 , L2 , and

LCO metrics. (For K >_ 3 dimensions his algorithms take O(N 2 -(K)(log N)I " (K)) time

where *(K) z 2-(K 1). For the special case of the Euclidean metric in three

dimensions this is improved to 0((N log N)1 .8) time.) In general, though, construction

of a minimum spanning tree is a graph problem. Kruskal [83] and Prim [85] give the

classical O(EV) time algorithms (improved to O(V 2 ) time [323). Both Yao [10.1] and

Cheriton and Tarjan (26] present O(E log log V) time algorithms for general graphs of

E edges and V vertices, and Cheriton and Tarjan [26) also present an O(V) time

algorithm for planar graphs.

1.1.4. Goomotric Searching Problems

As we saw above, many closest-point problems have associated searching

problems; in this section we summarize a separate class of searching problems that

are not related to any particular closest-point problem.

Shamos [89] gives an algorithm that locates a point in a straight-line planar graph

of N vertices in 0(log N) time and Dobkin and Lipton [33] and Dewdney

[31] extended this technique to K dimensions. Unfortunately, the storage and

preprocessing time required by these algorithms are prohibitive -- O(N 2 ) in the

planar case and O(N2K) in the K-dimensional case [102]. Lee and Preparata

[68] improved the storage and preprocessing time at the expense of increased
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searching time, giving an algorithm with O(log 2 N) query time, O(N log N)

preprocessing time, and O(N) storage. (Shamos and Hoey [89, 93] had achieved

these bounds for searching Voronoi diagrims.) Another alternative is Preparata's

algorithm with only O(log N) citicry time but O(N log N) preprocessing time and storage

[80). In 1977 Lipton and Tarjan achieved an O(log N) query time with only O(N log N)

preprocessing time and O(N) storage [69, 70]. The point location problem is

generalized to the location of a sel of points in [68, 82).

Kung, Luccio, and Preparata [64] worked on the problem of finding the maxima of

a set of N vectors in K-space. (A vector is maximal if none of the other N - 1

vectors are greater in all K coordinates.) Using divide-and-conquer, they

constructed an algorithm that finds the maxima in O(N log N) time in two dimensions

and O(N (log N)K' 2 ) time in K _ 3 dimensions. They also proved an fl(N log N) lower

bound for the problem. Maxima are important because of their relationship to

convex hulls and ECDF's (to be described). Bentley, Kung, Schkolnick, and

Thompson [10] extended those results to obtain a linear expected time algorithm.

Bentley and Shamos have created a fast algorithm for constructing and searching

an empirical cumulative distribution function (ECDF) [15]. An ECDF is an extension

of the familiar one-dimensional cumulative distribution function. The value of the

function at a point in one dimension is the number of points with smaller x

coordinate. In K dimensions it is the number of points that are smaller in all K

coordinates. Bentley and Shamos applied multi-dimensional divide-and-conquer to

accomplish ECDF searching in 0(logKN) time with O(N IogK'lN) storage and

O(N IogK-lN) preprocessing time. Bentley has further elaborated this in his papers

on range searching [6, 9, 11).

Bentley and Saxe have characterized properties of a large class of problems

called decomposable searching problems that include many geometric searching

problems, including ECDF searching [5]. A searching problem is decomposable if the

search for the relation of an object x to a set S = A U B satisfies

query(x, A U B) = query(x, A) * query(x, B)
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for any sets A and B such that S = A U B and some binary function N"O that Is

computable in 0(1) time. Decomposable problems have several Interesting

properties, one of which is that any static searching algorithm for a decomposable

problem can be mechanically transformed to a dyr.amic searching algorithm with a

loss of at most 0(log N) in preprocessing time and query time. They have extended

this result to a class of alternate preprocessing time, query time, and storage

tradeoffs [13, 88].

1.1.5. Miscollancous Geomotric Problems

There are several topics that do not properly fit into any of the above categories.

For example, we should mention that Garey, Graham, and Johnson and Papadimitriou

and Steiglitz were the first to demonstrate that several geometric problems are

NP-Complete [45, 74]. Also, Shamos has applied many of the techniques of

computational geometry to statistics and created a new field of computational

statistics [90]. ECDF searching (described above) grew from this work, and

Weide's thesis [99] gives many important applications of statistical techniques to

computer science problems. This includes a linear expected-time sorting algorithm

for any set with an underlying distribution having a bounded probability density.

1.2. Thesis Outline

The topic of this thesis Is the use of geometric transforms as tools for

constructing fast geometric algorithms. The object of using a transform is, of

course, to give the problem a more useful representation than it had In its original

form. There is, however, no explicit rule for determining which, if any, geometric

transform(s) can be applied profitably to a particular problem. Instead, we have

generated he;uristics for application of the geometric transforms. It is Intended that

these heuristics will help the reader use geometric transforms to solve his own

problems. In the following chapters we describe a collection of geometric problems

whose solutions illustrate the use of geometric transforms. The algorithms provide

not only examples of the applications of the transforms but also are useful results
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by themselves.

The use of transforms is not new to computer science. For example, the concept

of NP-complete problems (languages) is based on polynomial time reducibility of one

problem to anotner [1], the FFT (Fast Fourier Transform) is used for fast

multiplication of polynomials [20], ,nd many "filter" transforms are used in pattern

recognition. We also encounter transforms in the solution of difference equations

that arise in the analysis of algorithms (the z-transform or generating function) and

solution of differential equations that arise in analysis of several types of queueing

systems (Laplace transform) [61]. Yet another common example is obtaining a lower

bound on the complexity of a problem X by demonstrating that an algorithm that

solves X can solve a problem Y for which a lower bound is known. (Shamos' thesis

"91] gives several examples of this.) Finally, we should also mention Parker's

thesis [75]. which explicitly addresses the application of transforms to the problems

of Huffman tree construction, solution of nonlinear recurrences, and construction of

permutation networks.

Chapter 2 establishes the context and direction of this thesis with a simple

example - the diameter of N planar points in the L1 and LoO metrics. Before this

problem is discussed we first settle several issues -- model of computation,

representation of the geometricat objects, measures of complexity, and, of course, a

definition of diameter in the L1 and Ldx) metrics. We present an algorithm for

computing the L diameter and use a geometric transform (rotation) to transform

the L, diameter problem to an Lc diameter problem. We follow the same schema

followed throughout the thesis; Given a problem Y and an algorithm that solves a

(related) problem X, we apply a geometric transform f that transforms problem Y to a

problem of type X.

In Chapter 3 we describe the application of geometric transforms to intersection

and union problems. We solve two problems in detail (the intersection of

half-spaces and the union of disks) and give optimal algorithms for each. More

Importantly, we present several transforms and techniques in this chapter that will
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be encountered many times again in succeeding chapters. The first transform

introduced Is a point / flat duality that transforms problems that involve flats3 to

(simpler) problems that involve points. The second new transform (inversion)

converts problems that involve circles or spheres to problems of lines or planes.

Inversion is typically combined with an embedding of the problem in a higher

dimension to add another degree of freedom to the problem. We also introduce the

convex hull (a fundamental geometrical structure) in the first of its several

applications in this tlesis. Finally, the techniques of Chapter 3 are tied together by

deriving the point / flat du.ality from a limiting case of inversion combined with a

convex hull and a linear transform.

In Chapter 4 we apply inversion (after embedding in a higher dimension) and

convex hulls to the construction of netrest point tesselations of space. The most

Important such tesselation is the Voronoi diagram, which enables efficient solution of

a number of geometric problems including minimum spanning tree, closest points, and

Delaunay triangulation of a set ot points. Shamos [89, 93, 91] applied

divide-and-conquer in the plane to obtain the first O(N log N) time planar Voronol

diagram algorithm. This thesis gives a new O(N log N) time algorithm that extends

straighforwardly to higher dimensions.

Chapter 5 describes two surprising applications of algorithms that search

tesselations and the transforms used are the same in both cases -- the point / flat

duality followed by an orthographic projection. We transform linear programming In K

variables and N constraints to a problem of locating a point in a K-I-dimensional

tesselatlon induced by N points. The problem of computing the Euclidean diameter of

N points in three-space is transformed to the problem of finding all pairs of

overlapping regions in two outerplanar graphs of O(N) vertices, which can be solved

in O((N + K) log N) time aad O(N) storage (where K is the number of pairs of

antipodal vertices of the convex hull of the N points).

.3 A flat, also known as a hyperplane, prim., or a (K-1) flat, is a K-1-doensional linoarly clsed Wtsp of
K-space. Thus a line is a flat in the piano, a plane is a flat in three-space, etc.
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In Chapter 6 we cover several miscellaneous problems that do not fall in any of

tile categories of the previous chapters. We describe a use of the floor function to

obtain an O(N + 1/) time (-approximation algorithm for the Euclidean diameter of N

planar points and also demonstrate an application of gnomonic projection in an

algorithm of Yuval (105] for determining if N spherical points can be fit in a

hemispherical cap.

Chapter 7 summarizes the thesis and points out directions for further work.

Appendix I describes the problem of choosing a good orientation for flats (before

applying the point / flat duality). Appendix II gives an approach toward an

G(N log N) time lower bound for the Euclidean diameter of a set of N planar points,

and Appendix III summarizes the geometric transforms used, their important

properties, and their applications.
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- *2. An Exarnp!e: Diamneter in the Plane

This chapter gives some of the flavor, of geometric transforms by presenting a

simple example -- the transformation of the problem of computing the L, diameter of

a set of N planar points to the problem of computing the LW diameter of another set
of N planar points. But first we require some definitions and explanations alongthe

following lines:

1. a precise problem specification,

L2. a model of computation,

3. an appropriate cost measures to measure the complexity, and

4. the representation of the problem and the solution.

In the following sections we will address these issues and then construct algorithms

for the L, and Lco diameters of a set of planar points.

2.1. Problem Specification

Let S p1 - (xiy1). '1 ,...N ) be a set of N planar points. If D(pijpj) equals the

distance (in some as-yet unspecified metric) between points pi and pj, then the

diameter of S is

DIAM(S) amax Dp~)

The value of DIAM(S) depends, of course, on the metric chosen for 0. The three

metrIcs of Interest In most applications are

Ll metric: D 1(plopj) a 1x1 - xjj + Iyi - j

L2 (Euclidean) metric: D2(Pi'Pj) - ( (x, - xj)2 + (y, _ yj)2 )1/2

Lo metric: Doo(ppp j) max( jxI - xjj, lyj - j

Let the diameters in these three mietrics be denoted DIAM 1 (S). DIAM 2 (S) and

DIAMO,(S), rrspectively. The unit circles for these inetrics are pictured In Figure
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0D
L1  L L=

Figure 2-1: Unit circles in the L1 , L2 , and Leo metrics.

2-1.

The problem that we will solve is

Given an algorithm that computes DIAMo,(S) for any set S of N planar
points, construct an algorithm that computes DIAM 1 ( S).

The solution takes advantage of a natural isometry between the L1 andLo0 metrics

in the plane [27]. We will cover the L2 (Euclidean) diameter in Section 5.2.

2.2. Model of Computation

What tools are we given to compuite DIAIMI(S) and DIAM,(S)? In other words,

what is the model of computation? There are two (conflicting) criteria to be used in

our choice- (1) how realistically the model reflects the capabilities of real

machines, and.(2) mathematical tractibility of the model. The real RAM [91] (similar

to the integer RAM [1]) is a reasonable compromise for much of the work in

geometric algorithms. Its capabilities are basically those of any reasonable

algebraic programming language -- the four arithmetic operations (+,-,x,/),

comparisons between numbers (<,5), and indirect addressing (for convenient access

to arrays and other structures). A word in a real RAM is assumed to be able to store

a real number exactly; although this assumption is not entirely realistic, it Is close

enough for most practical applications. We often augment the arithmetic operations

to include arbitrary analytic functions (trigonolnctric functions, exponentials, and

logarithms, etc.). Thi floor function, on the other hand, will not be included without

special comment because it is not analytic.
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The floor function does seem to add power to our model of computation that is not

available from analytic functions alone. Gonzalez [47] used it to find the largest

gap between N (unsorted) real numbers in O(N) time and Fortune and Hopcroft

[41] solved the closest-point problem in O(N log log N) worst-case time. Several

fast expected-time algorithms use the floor function, including the linear

expected-time closest point algorithms of Rabin [86] and Yuval (104]. Weide

[99] uses it to improve -his linear expected-time sorting algorithm (for all underlying

distributions with bounded density) and Bentley, Weide, and Yao [18] extend

Weide's result to linear expected-time Voronoi diagrams (for certain probability

distributions).

2.3. Cost Mcasurcs and Complexity

Now that the model of computation has been defined we can talk about the cost

or complexity of an algorithm or problem. On a real RAM each arithmetic operation,

comparison, or (indirect) memory reference has an associated cost. The cost may or

may not depend on the arguments for the operation, the numbers compared, or the

contents of the memory referenced. The logarithmic cost criterion for an integer

RAM [1) does assign a greater cost to manipulations (additions, comparisons, etc.)

of large integers than for small integers. But for a real RAM it makes more sense to

use the uniform cost criterion -- all operations, comparisons, and memory

references have a unit cost, independent of the numbers being manipulated. We will

use the uniforin cost criterion throughout the thesis.

The cost of executing an algorithm is known as the complexity of that algorithm.

The complexiLy of a problem.is the minimum complexity of any possible algorithm

that solves it (under the given model of computation). (The complexity of an

algorithm is always an tipper bound for the complexity of the problem it solves.) The

complexity of an algorithm or a problem is usually expressed as a function of the

size of the problem. Tile size may be the number of words of Input, output, or

whatever is most appropriate for the particular problem. It is often, however,

inconvenient and unnecessary to obtain an exact count of all the operations,
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comparison, and memory references 'that an algorithm makes for any particular

problem size N. Knuth [62] has popularized a convenient notation for talking about

asymptotic bounds onl the complexity of an algorithm or problem:

O(f(N)) = set of all functions g(N) such that for some positive
constants M aid C, IJ(N)l _ C f(N), for all N > M.

n(f(N)) = set of all functions g(N) such that for some positive
constants M and C, g(N) > C f(N), for all N > M.

e(f(N)) = set of all fuh ctions g(N) such that for some constants M, C1 ,
and C2 , C1 g(N) _ f(N) 5 C2 g(N), for all N > M.

An algorithm Lhat solves a problem of size N in f(N) time thus proves an upper bound

of O(f(N)) for the time comlplexity of the problem. If a lower bound of f)(f(N)) time is

also known for that problem, then that problem has time complexity e(f(N)). The

complexity of an algorithm may alternately measure the space or storage used. The

notation is the same as for time complexity, and we thus may speak of an algorithm

having time complexity O(T(N)) and space complexity O(S(N)).

2.4. Representation of the Problom and Solution

How should a set S of N planar points be represented in a real RAM to enable

efficient computation of DIAM $(S) and DIAMI(S)? Many data structures would be

suitable but the simplest is either an N-by-2 array or two arrays X and Y of length N.

These representations are reducible to each other in linear time. Similarly, different

coordinate systems for the points (X-Y vs. polar, etc.) are linear-time reducible.

(The solution -- the diameter -- is simply a scalar real so its representation is not an

important issue in a real RAM.) For more complicated geometrical objects such as

polygons, polyhedrons, and Voronoi diagrams the issue of representation is not as

easily solved, and those problems will be tackled as we come to them.
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2.5. Algorithmn for LW Diainotor of a Sot of Planar Points

The Lou diameter of a set of planar points can now be computed fairly easily.

This is because, as shown in Figure 2-1, the circle for the Loo metric is a

rectilinearly oriented square. The L. diameter is simply the diameter of the

smallest rectilinearly oriented square that contains all of the points. Thle diameter is

therefore eithier the difference in y coordinates of the highest and lowest points or

the difference in x coordinates of the rightmost and leftmost points. Here is a
pseudo-Algol description of the corresponding algorithm:

L 0v Diameter of a Set of Planar Points

Input: integer N > 0, arrays X[ I NJ and Y( 1:N]
Output: L, j diameter of the N points
Time: 0(N), Stora1ge: Input + 0(1)

W~in -YMa x Y[- 1

XMin 4-XMax X

for 1 4- 2 thru N do
begin

XMin 4- min( XCIJ. XMin)
XMax +- max( X[1], XMax)
W~in 4- min( Y~l], YWin);

YMax *- max( Y~l], YMax)
end;
LcDiame ter 4- max( Xlax-XMn, YMax-YMin)

The 0(N) time complexity of the above algorithm is optimal to within a constant

factor because thle algorithm must read all of its N Inputs to ensure a correct

answer. There Is, however, room for improvement; for instance, the computation of

max and miii can be done in less than 3/4 as many comparisons as are taken above

[ 76). Note that tile storage required is actually 0(1) rather than 0(N) because no

computation involves more than the Ith element of X and Y at any given time. The

values InX and Y can th~refore be rend from a tape rather than stored In arrays.
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2.6. Algorithin for L, Diamptcr of a Set of Planar Points

In this section we will construct an algjorithmn for the 11 diameter of a set of N

points. We couldl start from scratch, but since the LW diameter algorithm is already

available, it would be nice to ibe able to make thle L, diameter problem look like an

Loo diameter problem, that is, trans;form it to an L(co diameter problem. Fortunately,

this can be clonle, anld thle cIlue is in Ficjurc 2-1. The circle for the L, metric can be

made to look like the circle for the L,,) metric if it is simply rotated 45 degrees (and

multiplied by a scale factor of 211/2.) This 1lds uIS to tile inltuitive algorithm below:

ILI Diameter of a Set of Planar Points

Input: integer N > 0, arrays X[1:N) and Y[1:N]
Output: L1 Diameter
Time: 0(N), Storage: 0(N)

Rotate thle points 45 degrees;
for I (- 1 thru N do
begin

X' (X [ I] + Y[ IJ) / 21/2;
Y- (-Xl] + Y[ll) / 2112;

X[I4- X'; Yrl] -Y';
end;

1 Compute K,, iameter and scale by 2 112

L, Diame ter t-- DIAM( )(X,Y,N) 21;

The hard part is proving that this algorithm Is correct. Since the diameter is

simply the maximum interpoint distance, it will be su ffirient to show that computing

the L, distance by the definition in Section 2.1 is equivalent to the computation in

the algorithm above. Let p1 (x1,yi) and pil = pi rotated 7T/4 radians about the origin.

(The rotation can be clockwise or counterclockwise, as long as It is the same in

each case. In the algorithm above, we use thle formulas x' =(x + y) cos(Tn14) and

y' a (-x + y) cos(rt14) to rotate the points n1/4 radians clockwise.) The two

methods for computing the L, distance between p, and pj are:
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1. (Definition) L1 Distance(pi,pi) = 1xi - xjj + JYi - yjI, and

2. (Algorithm) L 1Distance( p i ,p j ) a 21/2 • LWDistance(pi',pjf).

We prove this by reducing the second (algorithm) formula to the first (definition)

formula:

/2• L,,)Distance(p,',p) a r2 " max( Ixl - X I Iv' It

'X1xiyi I - - 11

= max( I(xi-x ) + (Y,-YJ)I, I-(xi-xj) (Yi-Yj)I )
xLiDistance(pipj)

There are four possible cases to satisfy:

1.x - xj < O, YiY<j 0 ,

2. xi - xj j - . O, Yi'Yj >- 0 ,

3. x i -x j O .  Yi-Yj <O,and

4. xi - xj < O, YiVYj -> 0 .

in each of these cases the identity holds. The algorithm for computing the L1

diameter is therefore correct.

2.7. Principles Covercd

In this chapter we solved a simple geometric problem -- computing the L1

diameter of a set of planar points -- and demonstrated the use of a geometric

transform. Several principles have been presented that will be encountered

repeatedly in this thesis: precise specification of the problem, choice of a model of

computation, cost measures and analysis of the complexity, representation of the

problem and its solution, and, of course, the use of a geometric transform. The

choice of the transform (rotation) in the example of this chapter may still seem like

something pulled out of a hat. Yet there is a method to it, as the following chapters

will demonstrate.
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3. Intersection and Union Problems

In this chapter we introduce two important techniques -- the use of a point / flat

duality and the combined use of inversion with embedding in a higher dimension --

and apply them to two geometric intersection problems. The first problem is the

intersection of N (UPPER) half-spccs and the second is the union of (the interiors

of) N circles. For both of these problems we develop algorithms that are optimal

(within a constant factor). Finally, the last section of this chapter shows that the

techniques that we used for these two problems are actually more closely related

than they appear to be.

3.1. Intersection of Half-Spacos

In this section we analyze the problem of constructing the intersection of a set of

N (UPPER) half-spaces. The first topic that we cover is the representation of

half-spaces and their common intersection In a computer.. Given this representation

we then prove upper and lower bounds on the complexity of constructing the

intersection in two, three, and higher dimensions. We conclude with fast

expected-time algorithms and some open problems.

The reader should carry away three important tools for the construction of

geometric algorithms:

- A point / flat duality that Is applicable to a number of problems in this

thesis. It is used for transforming (formidable) problems that Involve

flats to (simpler) problems that involve points.

- A fast algorithm for Intersection of (UPPER) half-spaces. (An algorithm
for irtersection of half-spaces is useful for linear programming in two

or three variables (91], intersection of convex polyhedra, and as a

tool for solving other geometric problems.)

- The first of several important uses of the convex hull of a point set.

We will use these tools many times in succeeding chapters.
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3.1.1. Representation of lalf-Spaces and Their Intersection

The first requirement of an; representation of a geometric object is that it

contain all of the necessary information to describe the object, and the second

requirement is that it provide the information efficiently (both for encoding and

decoding). We shall first describe such a representation for the two-dimensional

case (half-planes and intersections of halt-planes) and then extend our

representation to an arbitrary number of dimensions. The details of our

representation can be easily modified to a number of forms that can be reduced to

one another in constant time for a single object.

We represent a half-plane by the line bounding the half-plane and a single bit to

• Indicate which side of the line the half-plane is on. There are many ways to

represent the boundary line, but we will use the slope-intercept form with the

understanding that vertical (or near-vertical) lines will require exceptional handling

(Appendix 1).4 The half-plane

y ax + b

can thus be represented as (a,b,O) and the half-plane

y> _ax + b

can be represented as (a,b,1). In a computer these may be three (scalar) variables

or, if there are many half-planes, three elements of an array.

The representation of the intersection of N half-planes is more interesting.

Certainly one (cheap) method is to represent the N half-planes as described above

and include a scalar flag INT that indicates that the intersection is intended. This

has the advantage of representing the intersection fast (in linear time) but the

disadvantage that it doesn't help us quickly answer important questions about the

Intersection, such as "Is the intersection empty?". Another possibility is to append

to each of the N half-planes a flag that indicates whether or not part of the

4 Preparata and Mwilor [84) use a homogeneous coordinate representation, which treats all coordinates uniformly.

"~ 4
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boundary of the half-plane is also a boundary of tile intersection. (If the boundary

. of half-plane I does not meet the intersection of the N half-planes, then half-plahe i

is redundant.) This representation enables us to answer quickly whether or not the

intersection is empty but in the worst case it does not enable a faster solution to

questions of th form "Is point P inside the intersection?". To answer such

questions quickly we must store the nonredundant" half-planes in sorted order.

Since the intersection of N half-planes is a (possibly empty) convex polygonally

bounded region with at most N edges, the representation that we will use is the

quadruple

(V, M[1 :V], B[1 :V], F[1 :V]).

Here V is the number of edges in the intersection, M and B are the slope and

intercept, respectively, of the lines determined by the V edges, sorted in

counterclockwise ordcr, and F is a bit vector that allows us to quickly distinguish

the inside from the outside of the intersection.

The representation of N K-dimensional half-spaces is a simple extension of the

two-dimensional case. If the half-space is

k-1
x1, ; ax- + ak

i= 1

then the representation is simply

(a 1, a2 .... aK.1, aK, 0).

Similarly, if the "i;" is replaced by a ">_" in the equation above, then the "0" will be

replaced by a "1" in the representation. In a computer, we can represent N

K-dimensional half-spaces in one large array A[l:NO:K] where the eside" bits are

stored in the entries Ai,0J.

The intersection of N K-dimensional half-spaces is more difficult to represent.

This Is becanse the total number of vertices, eloges, faces, hyperfaces, etc. grows

exponentially with K. (If we choose to record only the half-spaces with flags that

Indicate for each half-space whether or not it is redundant, then only linear storage

I. - J-
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Is required. Unfortunately, as we mentioned for the two-dimensional case, we would

not then be able to answer quickly questions of the form "Is point P in tile

Intersection?".) We must first establish some terminology. Let a vertex be called a

O-face, an edge a 1-face, and, in general, a j-dimensional piece of the intersection

be a j-face. We will represent the intersection of K-dimensional faces by

enumerating the j-faces (for 0 j 5 K-i) anti recording how they are

interconnected. The representation of the intersection of N K-dimensional

half-spaces is the seplople

(H F, V, Connecti, Connect IPtr, Connect2, Connect2Ptr),

where

H[1 :,1:K] represents tile set of h flats determined by the K-i-faces
of the intersection,

F[1 :h is a bit-vector of flags that enable us to distinguish the inside
from the outside of the intersection.

V[l :v,1 :K] is the set of v vertices determined by the N half-spaces,

* Connect1 is a table of I-faces used by ConnectlPtr,

ConnectlPtr[I,J) is the subscript of Connect1 for tile first 1+1-face
that the Jth 1-face bounds,

Connect2 is a table of I-faces use(l by Connect2Ptr,

Connect2Ptr[l,J] is the subscript of Connect2 for the first I-i-face
that determine the Jth I-race, in counterclockwise order,

Note that the four "Connect" arrays are jagged arrays rather than rectangular

array.%. They are also redundant, for ease of use.

3.1.2. Lower Bound

We prove an Q(N log N) time lower bound for the intersection of N half-planes by

demonstrating that an algorithm that intersects half-planes can be used to sort.

(The lower bound applies for all halt-spaces of dimension K > 2 because half-planes

are just a special case of K-dimensional half-spaces.) Our construction follows that

of Shamos [91].

K -
0



24 December 1970. Geometric Transforms PAGE 27

Theorem 1: The intersection of N half-planes requires O(N log N) time in
the worst case.

Proof: Given N real numbers ai, i1, ... N we construct N half-planes hl
by

hi: y aix + (ai/2)2 .

These half-planes h1i contain the origin and are bounded by lines that
have slope ai and are tangent to the parabola y a x2 . The intersection of
the hi is a convex polygonal region whose edges are sorted by slope. We
simply read off the slopes of these edges to obtain the ai in sorted order.

The proof of the lower bound for intersection of half-planes requires a
lower bound for sorting under a model of computation that can support the
operations used in our construction above. This has been provided by
Friedman [43]. wio proved an n(N log N) time lower bound for sorting
under a model of computation that allows analytic functions of the input.
Since our construction requires only analytic functions, the fl(N log N)
lower bound for sorting applies also to the intersection of half-planes.

3.1.3. Intersection of Half-Planes

Shames [89] and Shamos and Hoey (94] show that the intersection of N

half-planes has time complexity G(N log N). Their algorithm for constructing the

intersection in O(N log N) time recursively applies their linear-time algorithm for

intersecting two convex N-gons. The algorithm that we describe below, on the

other hand, Is based on a geometric transform (point / flat duality) that maps the

problem of intersecting half-planes to two problems of constructing the convex hull

of a planar set of points (and a simple intersection problem.) Furthermore, it

extends to higher dimensions (unlike Shamos and Hoey's algorithm). We next

describe the decomposition of the two-dimensional problem into three subproblems.

The following sections characterize redundant half-planes, introduce the point / flat

duality transform and then apply the transform to the intersection of half-planes.
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3.1.3.1. Tho Two-Dimonsional Probleoi

In Figure 3-1 we illustrate the intersection of N half-planes. Tile intersection

Itself Is indicated by the shaded region. We partition the half-planes into two sets,

UPPER and LOWER. A half-plane is in set UPPER if the line at its boundary is above

the rest of the half-plane. Similarly, a half-plane is in the set LOWER if the line at

its boundary is below the rest of the half-plane. (If any boundary lines are vertical,

then we rotate all N half-planes a small angle.) The rrason that we produce this

partition is that the tranform (to be de.tcribcd) actually applies only to lines, not

half-planes. Since each line may be associated with two half-planes, we partition

the set of half-planes into two parts so that the half-plane determined by a line will

not be ambiguous. Our partition of the half-planes also enables us to divide the

problem of intersecting the half-planes into three parts:

1. Construction of U, the intersection of the UPPER half-plahes,

2. Construction of L, the Intersection of the LOWER half-planes, and

3. The intersection of U and L.

UPPER L

........ .

LOWER.......

(a) (b)

Figure 3-1: (a)lntersection of N half-planes., (b) Intersection of regions U and L.

As shown in Figure 3-1b, part (3) is relatively easy. If U and L have O(N)

vertices, then the intersection (shaded region) can be constructed in O(N) time. We

- ~ -- JI -- r
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describe the algorithm in detail as Algorithm IntersectChains below.

Algorithm IntersectChains

Input: Intersections of half-planes U a (NI, UM[I:N1], UB[1:N1]) and L a (N2,

LM[1:N2], LB[1:N2]) where N1 and N2 are integers such that N a N1 + N2

and UM, UB, LM, and LB are the slopes and intercepts of the lines

determined by the edges of U and L.5  The edges are sorted in

counterclockwise order:

UM1] < UM[2] < ... ( UM(N1]
LM(1] ( LM(2] < ... ( LMCN2]

Output: Integer E (number of vertices of the intersection), arrays M[1:E], B[1:E]

(slopes and intercepts of the E edges), bit vector F[I:E] to distinguish

the inside from the outside of the half-planes.

Time: O(N), Space: O(N).

1. Scan U and L (vectors UM, UB, LM, and LB) from left to right until two
segments Intersect at a point P. (If no segments intersect then the
intersection of U and L is empty.) The scan can be done in O(N) time in
a manner similar to the O(N) time merge in the merge sort algorithm.

2. Scan U and L from right to left until two segments intersect at a point
0.

3. If P $ 0, then return (in vectors M and B) the concatenation of the
chains of line segments of U and L between points P and 0.

4. If P = 0, then the intersection is unbounded (or just the point P = 0).
In the case of an unbounded intersection we must determine whether
to return the chains to the left of P or the chains to the right of P.
This can lie determined by comparing the slopes of the rays bounding
the left and right sides of U and L. If the slope of the left ray of U is
less than the slope of the left ray of L, then return the chains to the
left of P. Otherwise, return the chains to the riglit of P.

5 Stnce U is an intefsection of UPPER thaf-ptaej and L is an inter, etion of LOWER half-planes it is not
nircossary to include bil voectors irdcaling inskie vs. outside of the half-planes.
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We have just nenn how to construct efficiently the intersection of N half-planes,

given U and L, the intersections of the UPPER and the LOWER half-planes. Now We

must design a fast algorithm for constructing U and L. Since the construction of L is

so similar to tle construction of U, we will describe only the construction of U.

3.1.3.2. Recundant Half-Planes

Assume that the N half-planes are all UPPER half-planes. Some of these

half-planes, such as half-plane k in Figures 3-2 (a) and (b), do not bound any side

of the region of intersection. It would be nice if we could find all such half-planes

and throw them away since they do not contribute to the final result. Once that is

done, we can find the intersection of the UPPER half-planes rather easily. As we

can see in Figure 3-1 (h), the slopes of the sides of the chain U are monotonic

decreasing as we travel from left to right. Given tile lines determined by the sides,

we need only sort the lines by slope to determine the order in which they intersect

to form the sides. Since the sort costs only O(N log N) time, we can construct the

Intersection of the IPPER half-planes in O(N log N) time, once the redundant

half-planes have been eliminated.

P

P K

I 'j I-. I -,.:-

(a) (b) (C)

Figure 3-2: (a) & (b) - k is redundant, (c) - k is nonredundant.

How do we determine which half-planes are redundant and which are not? There

are two conditions that we need to check.

Theorem 2: An UPPER half-plane k is redundant with respect to UPPER
half-planes i and j iff

(A) Line k iS above the point P where lines i and j meet, and

(B) The slope of line k lies between the slopes of lines i and j.

" "" ' .. .. '=" 4 : ' F=' " .... lill I" I III~ 
i~ l al

I" f -,
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Proof: The half-spaces i. j, and k are

y_ aix+b i, y< ajx +bj, and y akx+bk

and lines I and j meet at point

P = (PxPy) ( -(bj-bj)/(aj-aj), (aibj-ajbi)/(ai-aj)).

(See rigtirr. 3-2.) llalf-plane k is redundant with respect to half-planes I

and j if( line k lips above the two rays ri and rj originiting at point P and
defining the boundaries of the intersection of half-spaces i and j. There
are six possible cases to consider:

0 < ai  <a j ,  0 < aj < a i,  ai  < (  a j

aj ( O , a 1 (a j (O, andaj(a i <O.

Since many of these are equivalent, we need to prove only the two cases

0 <aj<a i  and aj(O<ai.

Case (1) 0 < aj < at: The ray ri points (downward) in the direction
(1,-a i ) and the ray rj points (upward) in the direction (1,aj). Line k lies
above ri and rj ff

Py -au :5 ak(Px-u)+bk,y LO and (1)

Py aju ak ( P x  u) + bk , VuO. (2)

Letting u a 0 in either (1) or (2), we see that line k lies above point P,
satisfying condition (A) above. To prove condition (B), that ak lies
between aI and a., we divide by u in (1) and (2) and then take the limit
as u - 01, obtaining a i > -'k and aj _ ak, respectively. Conversely, if (A) is
satisfied (Py _< akPx + bk) and (B) is satisfied (0 ( a3 ( ak ( at), then
Inequalities (1) and (2) immediately follow.

Case (2) aj < 0 < ai: The ray ri points (downward) in the direction
(1,-a ) and the. ray rj points (downward) in the direction (1,-ai). Line k
lies above ri and rj iff inequalities (1) and (2) hold. The proof Is very

similar to the proof for Case (1). 03

How fast can we determine (non)redundancy for each of the N UPPER

half-planes? Certainly one approach is to test all pairs of half-planes i and j for

each half-plane k. That costs O(N3 ) time, though, which leaves much room for



24 December 1 070. Geometric Transforms PAGE 32

improvement. InI thle next Sectin WC show anl entirely different way of looking at

this problem th~at SOIVCS it in a natural and efficient way.

3.1.3.3. A Point / Line Duality Transforrm

In this section we present a transform that exploits a natural duality between

points and liner, iii the plane. A line in slope-intercept form (y =ax + b) is uniquely

identified by tile pair (a,b). (This transfot m wiil not work for vertical lines.) We thus

have a natural mapping from lines to point:-. We canl also map points to lines. For an

arbitrary point (x,y) thle set of all linies (in) slope-intercept form) that pass through

that point can he represented by the set ( (a,b) Iy =ax + b ). This transforms a

point (x,y) to a line b =-xa + y. Points thus transform to linies and linies transform to

points by the formulas

y =ax + b) - (a,b), and

(x,y) - b -xa +y.

This duality is illustrated in Figuire 3-3.

LL

Figure 3-3. Point / Line Duality

This transform has an interesting property: Distances in the y-coordinate

between points and linies are preserved.6 The difference in y coordinate between

6The res.trictioni in tlhu y coordjinate is in;;ort.nI bc'cau., it cari be ,mov-i to be imposauible to preserve the
Eucildoisn distance b vjcen a point and a line under a ult,:rnfm V.
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point (c,d) and line y =ex + f is' d - (ec + f). The difference in the transforms

b =-ca + di and (CAf is (-CC + di) - f,, wVhich is the same. It follows from this that

incidence is prneserved. 7 If point (c,d) is onl line y = ex + f, then it holds also for

their transforms -- point (c,f) is on line b = -ca + d. Note fuirther that not only is the

magnitude of the distance (in the y-coordinite) preserved but also its sign. Thus,

above /helowncess is preserved. If (rc,d) is above (below) line y z ex + f, then the

transform or (c,ci) is above (below) tile transform of y a ex + f.

There is another property of thle transform that we should mention. The transform

is not involu tory, but composition of it (our timei produces the following:

(X~y) -4 b =-xa +y - (-x,y) -0b axa +y -+ (x,y)

Only a slight change is rclircd to mtake the transform its own inverse: express

lines in the form y + ax + b z0 rather than y = ax + b. Then it is true that

Y + ax + b =0 - (a,b). But this lies thle unfortunate side effect that

above/ belowness between points and lines is not preserved; it is reversed. If point

(c,d) is above line y + ex + f = 0 then the transform of (c,d) will be below the

transform of line y + ex + f = 0.

3.1.3.4. Application oil tho Transform to tic Two-dimensional Problem

We now show hlow the transform enables uIS to intersect the UPPER (or LOWER)

half-planes fast. More specifically, the transform enables an efficient mechanism

for eliminating tile "redundant" hiallf-planes. Recall the two conditions for

redundancy of an UPPER half-piano: a half-plane k is redundant iff there exist

half-planes i and j suIch that (1) line k is above the point P where lines i and J

intersect, and (2) the slope of k is between the slopes of lines i and j. In the ab

plane there is a corresponding interpretation.

In Figure 3-4, line k is above point P in the xy plane. This is transformed to a

point k that is above line P in the ab plane. (Above/ belowness between lines and

7There are other duallity transfOrMSMtat preserve M-ideVw~e. $Uc'h 33 Plucker'3 transform [9i].
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K P
K

Figure 3-4: Transform of a redlundlant hialf-plane.

points is preserved by the transform.) The slope of a line in the xy plane is tile a

coordinate of the corresponding point in thle al) plane. Line k thus has a slope

between tile slopes of lines iand j and transforms to a point k with a coordinate

between the a coordinates of points i and j in the ab planle. Figure 3-5 shows thle

result of app~lying the transform to a set of N UPPER half-planes. A point in the ab

plane corresponds to a redundant half-plane iff it is directly above one (or more) of

the line segments determined by the N - 1 other points.

Figure 3-5: Transform of N UPPER half-planes.

Theorem 3: Given a set of N UPPER half-planes of the form

y 5 aix + ,

and a mappinig

y 5 aix + bi 4 (a1, bl),

thle nonredundant half-planes correspond to those points onl the bottom
part of. the convex hull of the N points

(at, bi).

Proof: The proof is in two parts; (1 ) a point on the bottom part of thle
convex hull correspondls to a nonredundlant half-plane, and (2) a
nonredunclant half-plane transforms to a point on the bottom part of the
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convex hull of the N points.

1. Let P be a point onl the bottom part of the convex hull of the N
points In the ab plane. P does not lie above any segment

connecting two of the N points because P would then not be on
the bottom part of the hull. It follows that P can not be
redundant.

2. If a half-plane P is nonredtindant, then it transforms to a point P
that does not lie ahove any segment connecting two of the N - 1
other points in the ab plane. P must be on the bottom part of the
convex hull because otherwise it would lie above such a
segment.

03

We have reduced the problem of intcrsecting N UPPER half-planes to the problem

of constructing the (botLom part of tle) convex hull of N points. The convex hull of

N points in the plane can be constructed in O(N log N) time [48]. This leaves only

the detail of separating the top from the bottom part of the hull. To do that, we find

the leftmost 4oint of the hull in O(N) time and then traverse the hull on the bottom

side until the rightmost point is reached.

Theorem 4: The intersection of N half-planes can be constructed in
O(N lor N) time.

Proof: We have broken the problem of intersecting N half-planes into
three parts. Part (1), the intersection of the UPPER half-planes, has
been shown to cost only O(N log N) time. Part (2), the intersection of the
LOWER half-plancs, is equivalcnt to part (1) so it can also be done in O(N

log N) time. Part (3), the intersection of the results of parts (1) and (2),
costs only O(N) time. The intersection of N half-planes can thus be

solved in O(N log N) time. 10

It is interesting to note that we can also use an intersection of half-planes

algorithm to produce a convex hull of points algorithm. We first transform all N

points to UPPER half-planes by the formula

(x,y) " b xa + y
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and intersect the half-ines. Wu tranz .'urm i bck to olbtain the lower part of the

hull. Then wce tran:;form aill N points to 'LOWER half-planes and intersect the

half-planes id transform) back for the uppIer part. oi' the hullI. Merging the upper and

lower parts in trivial, nince 'lie. lpftmost and rightmost points will be in each one.

The total time requiired is O(N log N).

3.1 .4. Intersction of Thrce-D inicnsional Half-Spaces

The techniquei that we jtust used in tw ,o dimensions can lbe extended. to the

intersection of N UPPFR (or N LOWER) three-dimensional hialf-spaces. -(Zolnowsky

(1 00] and Preparata an1d MulleIr [811] de-scribe ill the details require to solve the

general problem or internrcting threc-diracnsional half-spaces.) The following'

sections extFnd the conicepIt of redundant haif-rpace to three dimensions and apply

the (three-dimensional) point / flat duaiity to construct the intersection of N UPPER

half-spaces in O(N log N) time.

3.1 .4.1. Reduindancy in Thre o Dimensions

The algorithmi for constructing U in three dimensions is analogous to the algorithm

4 for the two-dimensional case. We first transform the N UPPER half-spaces to N

points in abc space and construIct the (bottom part of the) convex hull of the points

In O(N log N) time. The points above the bottom part of the convex hull correspond

to "redundant" hall-spaces and( can be dliscardcd. To form U we simply apply an

inverse transform to the bottom part of the convex hutll. We will now describe this

procedure in detail.

Assume tha-t there are N UPPER halU-spaccs. Some of these half-spaces

contribute to the intersection U and somen are "Irndundlant," such as half-space M in

Figure 3-6. For the plane there are two simple condiltions for redundancy of a

half-plane. In three dinennions there arc two analoclous conditions for a half-space.

The first condition for redlundlancy of a half-space M is that plane M be above the

point P wlicrce planes I, J, and K intcr,,ct, as in ri(,Ure 3-0. The second condition,

the "betwconnc! s of slopes" condition, is more complicated to express. The
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P

r r 1-
rKI

Figure 3-6: A redundant half-space.

purpose of thc "betweenness of slopes" condition is to ensure that a plane above

the point P cannot drop clown fast enough to enter the region below planes i, J, and

K. We wil now derive an algebraic description of these two conditions.

Let plane M be written

z = aMx + bMy + cM

and let planes I, J, and K be written

z ax + bly + c ,

z a aix + bjy + cj, and
4 z zaKx +bKY+cK.

The point P u (Px. Py9 PZ) where planes I, J, and K meet is defined by

- -b, 1- ci1

L-a, bK 'I FP"1 cKJ

The three rays rlj. rjK, and rKi can be expressed as vectors originating at point P.

The directions of these three vectors are obtained by computing the cross products

of the normals to planes I, J, and K. For example,
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r~~~iT (wufd II b . a. bi -
a~b1x la4 b, -11a, bj -1 a, bk -1

where IJand Kare. unit vectors along tile x, y, and z axes, respectively.

(Similarly for rJK and rKl.) We may now express the two conditions for redundancy

of a half-space.

Theorem 5: Let UPPER half-spaces 1, J, K, and M, point P, tincJ rays rj
rJK, and rKl be as (livpn above. Hlalf-spice M is redundant with respect
to half-spaces 1, J, and K iff

ampX + 1 MPy 4 cM ~PZ (4)

and

aM,,OIJ + b'%,4 ~ T Iv

a--tK+ bwOK 'VJK (5)
aMCCI + b'.'.KI 'K

Proof: M is redlundant iff it lies above all points of the three rays rij,
rJK, and rKl. But M lies above these thrcc rays if f

am (PX~ + UCII 4) + b1) (P~ + uOI4 ) + CM (13 + IIt); VIi>O,

am (r" UC*JK) 4 bm (P, + LI~jK) + CM (P + 4IO anA.J

am (P% + klaki) + bm (P~ + ~)4 ~ (P + IaV ...) Yaf

Letting u = 0 we obtain (lie first condition (inequality (4)) for redundancy

of M

aMPX + 1'Mpy + cm Pz
and dividing by u and taking the limit as u -(0 wie obtain the other three
conditions (5). Conversely, it tile four inequa li ties of (4) and (5) are
satisfied, then M must lie above all points of thle three rays r1j. r X, and
!Kl.I We prove this by simply muiltiplying bo0th sides of tile last three
Ineqlualities (5) -by a u > 0 and adding tile result to the first inequality (4).
03.
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3.1.4.2. Application of the Transform to U%* Intersection of Half-Spaces

Tile transform that we use in three dimensions is a straightforward extension of

the two-dimensional transform; planes transform to points and points transform to

planes. The forlasl for the transform are:8

zaaxeby~c -4 (a,b,c)and(6
(x~y,z) -4 c a-xa +-yb +z.

Thc distance betwren a point and a plane In tie z coordInate Is preserved by

this transform and, most importantly, tile sense of above/belowness (in the z

coordilnate) hetwren pointr and planer. is also preserved.

Thteorem 6: Let the UPPER hlnf-spaces 1. J. K, and M transform to
points PI, PJ- PK' and PrA by the transform (0). lialf-space M Is redundant
with respect to h-ilf-spacrs 1, J, and K iff point PM is directly above some
point in (or on) tile triangle determined by points PI, Pj, and PK-

Proof: Plane M (z z aMx + b~jy + CM) of Figure 3-6 transforms to tile
Point (am'bM.CM) in abc space, and planes 1, J, and K transform to the
points

P1 a (a1,b1,c1), Pj (aj,bjcj), and PK x (aK.bK,cK).
The inequtality (4I) (of the previouis section) for redundancy of half-space
M (point (aM~bM.cM)) can he rewritten

cM 2: (-Px)aM+ (-Py )bM + z

The interpretation in abc space is that point (aM,bM.cM) lias above the
plane

C a (_P X)a + (-P y)b + z
By inspewntion of Equation (3) we also see that this plane is determined by
the threr, points PI, Pj. and PK. The three Obetwecnness of slopes"
conditions (5) define three vertical Planes, each of which passes through
two of thn three points P1. Pj, and PK- Since half-slpacesl 1, J, and K are
all UPPER half-spaces, the set of redundant points PM Is a bounded

%anhzig (28] uses the above utorf in the context of linear programming and Huf fman [53] us"s an a&most
identical tranfform for an analyses or polyhedral scones. KaNde (57] uses this transfer. for what he calls th
serigaini ahhr of lwe-dimon-ionai fi gures.
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region of abc space. The intersection of thc three half-spaces of
conditions (5) and the half-space (4) is therefore the region in, on, or

above the triangle determined by points PI, Pj, and PK- r

Corollary: Let the N UPPER half-;paces 111, 112, - -. IIN transform to
points P1, P2. ... PN by Equation (G). A half-space HI is redundant iff
point P, does not lie on the bottom part of the convex hull of points P1 ,
P2. .... PN"

We can construct the (bottom part of the) convex hull of N three-dimensional

points in O(N log N) time. We do this by augmenting the algorithm of Preparata and

Hong (83] for constructing the (entire) convex hull with a mechanism for separating

the bottom part of the hull from the top. One way to do this is to maintain with each

face F of the convex hull a vector perpendicular to F that points toward the inside

(as opposed to the outside) of the hull. The bottom faces of the hull are those

faces whose vectors point upward and the vectors for the top faces point

downward. (Note that there will be some vertices in both the top and bottom parts

of the hull. These are the vertices that bound both top and bottom faces.) The

bottom and top parts of the convex hull are therefore separable in 0(N) time, once

the entire convex hull is constructed in O(N log N) time.

FK V1

vj F>-Vi ->FK

Vj/ FLv v,

Figure 3-7: Transform of a convex hull.

To find the intersection of the UPPER half-spaces, we must transform the bottom

part of the convex hull to xyz space. The O(N) vertices transform, of course, to

planes. But there is muchn more information than that in the convex hull. For

instance, defining each face of the hull thcre are three coplanar vertices I, J, and K.
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9 The plane that these vertices define is transformed to a point in xyz space. This

point is where pianos I, J, and K (of xyz spacc) intersect. (This follows from the

fact that the transform preserves incidence between points and planes.) Also, as

illustrated in rigure 3-7, if faces FK ,and FL of the (bottom part of the) convex hull

share an edge VIVj , then in xyz space faces V, and Vj share an edge FKFL. In fact,

even the unbounded faces of U in xy. spacp can be obtained from the transform.

These faces or U correspond to vertices at the boundary between the top and

bottom parts of the convex hull in abc space. Little computation is thus required to

construct U after the transform from abc space since all the faces, vertices, edges,

etc. are directly obtainable from the transform. We have

Theorem 7: The intersection of N UPPER three-dimensional half-spaces
can be constructed in O(N log N) time.

Proof: Since the transform costs only O(N) time, the total time to
construct U is dlnminAtnd by the. time to construct the convex hull in abc

space, which is O(N log N) time. 0

3.1.5. Intersecting Half-spaces in Four or More Dimensions

Suppose that in K dimensions we can construct the convex hull of N points In

H(N,K) time; we can then construct the intersection of N UPPER K-dimensional

half-spaces in 0(lI(NK)) time. The algorithm is a straightforward extension of the

one that we used in the three-dimensional case. We first transform the N

half-spaces to N points in K-spice. Then we construct the convex hull of these N

points in H(N,K) time. Then we partition the top from the bottom part of the hull and

transform the bottom part back to obtain the intersection of the N UPPER

half-spaces. of the hull, and transform the bottom (top) part of the hull back.

In this section we present an algebraic description of the components of the

K-dimensional algorithm. The first step is to describe algebraically the conditions

under which an UPPER half-space M is redundant with respect to a set S of K UPPER

gAsummg thfii the vertices are in general position. It not. then there may be four or more copianar vertices.
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half-spaces. We then present a gecneral duality transform for K-space and interpret

the condition!- for rechundancy in tile trainsform space. Finally, we characterize

redundancy amiong N UPPER half-spaccs in termis of the convex hull of tile N points

to which they transform.

3. 1.5. 1. Algebraic Description of fcUdadncy

We must first introduce some terminology. Let a "j-face" of a K-dimensional

polytopc be denoted an follows: a vertex is a 0-face, an edge (a line segment) is a

1 -face, etc. Let S be a set of K UPPER K-dimensional hialf-spaces defined by

K-i
XK : 2:ai~ I a,,, i=1,.. K

j=1

and let M be an UPPER K-dimensional hialf-space defined by

K-i
X K _ 2:C1"41x j + IM.

j= 1

Let the matrices B and C be defined by

all a 12 ... a1 , -1 ~ FaIK
a21 a22 . .. a2, 1 -1 1 82K

B and C

The flats bounding the K half-spaces of S meet at a point P (Pig P2 , *PK)

defined by

BP =C. (7)

In three dlimensions the planes 1, J, andl K determine three rays r1j, rJK, and rKI

originating at point P. In K dimensions we have K suIch rays, denoted rl, r2, . . ..r

where r1 is the ray dectermined by thle K-i elements of S - 0i- If (ail -ai2 ... *

Is a vector pointing in the sanme direction as ray I. thien we may write ray Iin
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parametric form as

(x I x 2, ... xK) (P P2 PK) + u (ail ,ai2. aiK), U Z 0.

On the other hand, each point (x 1 ,x2 , ... xK) of ray i must also lie on all K - 1 flats

of S - (i):

all1. a*1 .. a l.. 1I : ajlK1
aiK.,1 a 9.1,2  ... ait,K-1 1 a ai.1,K
ai+l,I  ai+t,2  . . a+1,K.1  1 ail,K• Q
•aK1 aK2 .. ,K. -.-- aK

Combining these two equations we obtain

al a12  ... aK. -1I

. .l a, 2 ... ~ i2~ L~a=.l,1 ~~C1 0i1
2 .. ai1K 1 -

a,.,., ai-1, 2  .. aj+l,K~-1 .

• " " . iK.,

L aK1 aK2 ... aK,K.1 -1

To solve this system of K - 1 equations in K unknowns we take advantage of the

following property of cofactors:

K

1 bj cofm(B) a det(S), if i a m (8)
Jul a 0 ifli1m.

where cofij(B) is the cofactor of bij. It follows that the general solution is

(1c1,-x12 . iK) ci x (cofi1 (B), cof12(B) .... cofiK(B)),

Ui

'- *
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where ci is a constant for eachi i. Thie choice of ci is not entirely arbitrary since

SGN(ci) cdetermines whlether ray ipoints uI) or down. The correct choice for ci

satisfies

K-1
PK'+ *.K < 1: a,, (P, + a ) + i

j~1

because each point of ray i (beyond point P) should lie below the half-space i

Using tile definition of P and the above properties of cofactors we canl prove that

0 S ci det(B). The vectors a are thcrefore chosen to be

(ail -ai2. ,aiK) =deIt(B) x (cof11 (B), cofii2(D). -cOfiK(B)).

Theoremn 8: Lct the UPPER half-space M, the set S of K UPPER
K-dimensionail half-spaces, point P, and K rays r1 be as given above.
Half-space M is redundant with respect to the K half-spaces of S iff

K-i

PK: a.P, + aMVK

and

K-i

2aa- j a ,K' i:1 . , K. (10)
j: j

Proof: I lif-space IM is redUndant iff flat M lies above the rays ri, i
1, . ,K. We canl express this condition as

K-i
PK + uaK 5 E amj (P + Ua + a,. i V> O. i =i1. K

If M is reduincant, thpin we can obtain condition (9) by simply setting u
0. Condition (1 0) results. from dividing lby Li and taking the limit as u 0 M~.
Conversely, if conditions (r9) and (10) are satisfied, then M must be
redundant. Simply multiply condition (1 0) by u l 0 and add the result to
condition (9). 01.
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3.1.5.2. The General Trrn.-icrm

Before we can characterize redundancy in the transform space, we must first

elucidate the important properties of the K-dimensional transform. This transform

maps not uly f la ts to points and p~oints to flats, but also J-SpaCes to K-+1-spaces.
.General Transform: The transform of a j-dimensional subapace of

K-space is the set of all flats that contain it. This is a K-+-i-dimensional
subspace of flats. Since each flat can be readily represented as a point,
however, the transform of the j-dimensional subspace is represented as a
K-J-1 -dimensional subspace of points.

Theorem 0: The general transform preserves incidence. In other
words, 'if a JI-climcnsional subspace of K-space is a subspace of a
j2 -dimensional suhnpace, then the transform of the J2-dimensional
subspace is a subspace of the transform of the j1 -dimensional subspace.

Proof: We nmay interpret the jj-dimensional subspace as an
Intersection of K-jj flats and the j2 -dimensional subspace as an
intersection of K-j 2 flats. That is, we may define define the
jj-dimensional subspace by

all a12  ... a IK- I alK

Ia 21  a22 ... a.K- -1 a2K

aK-j2. I aK-2 .. aK.jK1 1 1:1 = -

K-j1.1 aKI,.. 5K-jI1 -1 - aAK-jI.K_

and the j 2-dlmensional subspace by
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[all 812 ... a , -1 alK

a2l 022 . az2 K I1 [2 a2K.

OI..J2,1 a..,2,2 aK-J2.,--1 1 KK,

* The transform of the jl-dimensional subspace is the set of points of the
f orm

U2

rx-' all a21 .. K-jZ,l ... a,-,,
[X 2j a,, a2  aK-J2,2 K-j1 .2 u X.j2

X_ .alK a2K -2K ... a K-jl1K- UK-jl 1
K-jj-1

and the transform of thle j 2 -clime nsional subspace is the set of points of
the form

U1F; I- a, a21 ... aK.j2,l U2
X21 812 a2 a_,.

0,2 **K-j2-1

&-K_ La lK a 2K .. K-j2,K 1 - Z U

It is easy to see that the transform Of thle j2 -dlimensional subspace is a
subspace of the transform of the jj-dimensional subspace. 0
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3.1.5.3. Redundancy in tho Transform Space

Having presented both a oharacterization of redundancy of a half-space and the

general duality transform, we can now interpret the conditions for redundancy in the

transform space. The K flats bounding the half-spaces of S transform to K points by

the'formulas

K-1

XK  I aijxj * a, - (al, ai2... aiK), i1 ... , K,
jul

and the flat bounding half-space M transforms to point M by

K-1

XK = 1 aMjxj + a.k -k (aM1, aM2 . am,)
j=l

Since the transform preserves incidence (Theorem 9), the flat determined by the K

points (Ol , ai2, .... aiK), i = 1, .... K is simply the transform of the point P

determined by the K flats of S (Equation (7)). Letting the coordinates of the

transform space be z1 , z2 , ... , zK, this flat is

K-1

zK X (-P) zj + P
Jul

We can now interpret the first condition (9) for redundancy of half-space M (with

respect to S) as a condition on point M and the flat determined by the transforms of

the K elements of S:

K-1

aMK > X (-P,) a.J, + *
jul

We have therefore proved

Theorem 10: The first condition (9) for redundancy of UPPER
half-space M with respect to the K UPPER half-spaces of S requires that
point M (in the transform space) lie above the flat determined by the K
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points (ai - i2', aiK), I 1,, K.

The other conditions for redundancy of M (the "betweenness of slopes"

conditions (10)) map to a set of K half-spaces in K-i -space

K-1

j: 1

in which the point (aMl, aM2, aM.,K-1 must lie. The (K-I -dimensional) points

that satisfy these K conditions are

z Ia,,a, ... aKlI,l u1

Z2 a22- ... aK-ilZ U2[it K-i_ 2aKa-K ..OlKi[Uij

where

K
U= 1 and Uj 2 0, i1,. , K. (12)

That is, the points that satisfy the "betweenness of slopes" conditions must lie

inside the convex hull of the K-i-dimensional points

(ail1 o ai 2 ,... ,, ai,K-1), ' = ., K. We prove this assertion as follows. Any point in

K-i -space can bec written in the form of equation (11) if the restrictions of (12) are

Ignored. (We have, in fact, one extra degree of freedom.) The "betweenness of

slopes" conditions are therefore

K-1 K-i K

I 01ji 2 det(B) cofi,(13) X ahuh : a% det(8) cof.,K(B), i = , . K.
1=1 j1j h1l

which reduce to
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K K-1

det(B) I Uh = cof,,()bhj det(B) Cof;K(), I 1... K
* h1' j=1

But since all entries in the Kth column of B are -1, the properties of cofactors (8)

allow us to reduce this further to

det(B) cofiK(B) X uh + det(B)u, Z det(B) cofIK(), = 1,.,, K (1 )

This is certainly satisfied for all I if the restrictions.of (12) hold; the converse Is

also true. Any point 0 that does not satisfy (12) can not lie in the convex hull of

the points ( .ai, ... i 2 1,..., K. Here we can take advantage of the

extra degree of freedom mentioned above to express the point Q as a linear

combination of these K points such that

2u 1 h X 1 but u, < 0 for some i.
hal

It is easy to see that such a point does not satisfy the conditions of (13) and is

therefore not redundant with respect to S.

We have just proved

Theorem 11: The "betweenness of slopes" conditions (10) for
redundancy of UPPER half-space M with respect to the K UPPER
half-spaces of S require that the point (aM1, aM2, ., aM,K.1) lie Inside

the convex hull of the points (ail, ai2, .... ai,K.1), i a 1,..., K.

Combining Theorems 10 and 11 we obtain

Theorem 12: UPPER half-space M is redundant with respect to the K
UPPER half-spaces of S iff point M lies directly above some point in the
convex hull of the points (aiI, ai2 .... aiK), i. 1..., K.
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3.1.5.4. Redundancy Among N Half -spaccs

In this section we characterize redundwcy of half-space M with respect to a set

of N K K-dimensional half-spaces. (If N is less dhan K then there can not be any

redundant half-spaces unless some are parallel.)

Theorem 13: Let T be a set of N UPPER K-dimensional half-spaces.
UPPER half-space M is redundant with respect to the half-spaces of T iff
M is redundant with respect to the half-spaces of a subset S of T that

contains exactly K half-spaces.

Proof: It is clear that if M is redundant with respect to a subset S of T,

then it is redundant with respect to T. We shall now establish that the
converse is also true. Let U be the intersection of the N UPPER
half-spaces of T. U is a convex polytope because it is an intersection of
half-spaces. If a half-space M is redundant then its boundary (flat M)
lies completely above U. Let V be the point of U that is closest to flat
M. (If the closest point is not unique, then let V be any vertex of U that is
in the set of closest points.) Since U is a convex polytope, V is (or can
be chosen to be) a vertex of U. Let S be the set of half-spaces whose
boundaries meet at point V. If the half-spaces of T are in general
position, then S contains exactly K half-spaces. Since U is convex, we
can travel from vertex V along the boundary of U in any direction and the
distance to flat M will be nondecreasing. It follows that the boundary of
U can never intersect flat M and therefore half-space M is redundant

with respect to the K half-spaces of S. 0.

We have just characterized redundancy of a half-space M with respect to N

half-spaces in terms of redundancy with respect to K half-spaces. But M is

redundant with respect to a set of K half-spaces iff point M lies above a point in

the convex hull of the points to which the K half-spaces transform. We have

therefore

Theorem 14: An UPPER half-space M is redundant with respect to a set
T of N UPPER K-dimensional half-spaces iff the point M (to which
half-space M transforms) lies directly above a point in the convex hull of
the N points of the transform of the N half-spaces of T.

Since by Theorem 9 the components of the convex hull correspond to components of

the intersection of half-spaces, we have
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Theorem 15: If H(NK) is the time to construct the convex hull of N
points in K-space, then N UPPER K-dimensional half-spaces can be

intersected in O(H(N,K)) time.

3.1.6. Open Problems

There are still a few open problems concerning intersection of half-spaces.

1. The time to intersect N (UPPER) K-dimensional half-spaces depends on
the time I(N,K) to construct the convex hull of N K-dimensional points.
We know that the worst-case time complexity is O(N log N) for two

and three dimensions but for four or more dimensions only the Q(N2 )

time lower bound has been proven. (See Section 1.1.1 for a
description of our knowledge of convex hulls.) Ior K >_ 4 dimensions

we lack tight upper and lower bounds on H(NK).

2. Under some conditions the expected-time for Intersection of
half-spnces may be less than the worst-case time. We may use fast

expected-time convex hull algorithms to obtain fast expected-time
intersection of half-space algorithms. For example, in two and three

dimensions If the expected number of nonredundant half-spaces Is

O(NP) for some p ( 1, then N half-spaces can be Intersected in O(N)
expected-time [16]. Since the convex hull of N K-dimensional points
can be constructed in O(N) expected-time, if the K coordinates have
independent distributions (10, 30] , we can intersect N K-dimensional
half-spaces in O(N) expected-time if the N half-spaces transform to N
points whose K coordinates are distributed independently. Under what

other conditions may we intersect half-spaces in fast expected-time?

3. We can intersect two convex (three-dimensional) polyhedra in O(N log
N) time by simply treating it as a problem of intersecting half-spaces.
Can we Improve this to O(N) time? (in two dimensions, convex N-gons
can be intersected in O(N) time whereas it requires O(N log N) time to
intersect N half-planes in the worst case.)

4. Ilow fast can we intersect N half-spaces on-line in two or more

dimensions? (Shamos [91] has presented an O(N log N) time planar
on-linc convex hull algorithm and Preparata (78] has refined that to an
O(N log N) time real-time algorithm. Both of these algorithms update

the convex hull as each point is rend -- rather than operating on all N
points collectively -- but tile on-line algorithm may require up to O(N)

time for any particulr tupdate whereas the real-time algorithm always

requires at most 0(log N) update time.)
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3.2. Union and Interccction of Di.,ks

We present the problem of constructing the union or intersection of a set of disks

(the interiors of a set of circles) not for its applications, but because the solution

presents several techniques that are uscful for solving many other problems. We

introduce two new transforms, inversion and embedding in a higher dimension.

Inversion is used to convert problems that involve circles or spheres to problems

that involve lines or planes. Embedding in a higher dimension adds another degree

of freedom to the problem, which can permit application of techniques not applicable

to the original problem. The disk algorithm combines inversion and embedding to

transform the problem of constructing the union or intersection of a set of N disks to

the problem of intersecting N three-dimensional half-spaces, which we have solved

In O(N log N) time. 1 0 Another important feature of the algorithm is that it

demonstrates an example of how a nonconvex object (the union of disks) can be

represented by a convex object (an intersection of half-spaces).

3.2.1. Represontation of Disks and Their Union or Intersection

A disk is the set of all points within a given positive radius R from n planar point P.

If the coordinates of P are (PxPy), then the disk may be represented as a triple

(PxPyR) and a set of disks as a set of such triples. The best representation for

the union or the intersection of a set of disks depends on what kinds of information

about the union or intersection we want to retrieve efficiently. For several

applications the best representation will be as an intersection of half-Spaces in tile

transform space (to be described), but for other applications we may need a

representation in the original space. We will not describe either representation in

detail because we have already described the representation for intersection of

half-spaces and the representation in the original space is only a slight modification

lOShamos and Hoey (94) describe an O(N Iog N) timc intersection of N disks that is a modification to their
algorithm for intersectinj half-planes. Their algorithm unfortunately does not extend to an O(N log N) time
algorithm for the union of N di.ks.
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of the representation for polygons.

3.2.2. Lower Bound for the Union or Intersection of Disks

We prove that an algorithm that constructs the union or intersection of N disks

can1 be used to sort. Since there is an Ifl(N log N) time lower bound for sorting

(under the -aime model of computation used in the construction below), we have an

(N log N) time lower bound for constructing the union or intersection of N disks.

Theorem 16: The construction of the union or tlhe intersection of N
disks takes f(N log N) time.

Proof: Let S be a set of N reals ti [0.1). i a 1. .... N. For each real t
we have a disk di centered at (xi.y1) with radiu~s two where

As illustrated in Figure 3-8, the points (x1.y1) are all on the unit circle and
the boundaries of the disks di are tangent to the unit circle. The union of
the dlisks di is represented by a closed chain of circular arcs
(ab-bc-ccl-da.in Figure 3-8). The order of the arcs in this chain forms a
sort for the N reals ti. Similarly, an intersection of the same N disks Is
represented by a closed chain of circular arcs (he-ef-fg-gh In Figure 3-8)
whose order sorts the reals ti.

4 B

A B C A

0.00

Figure 3-8: Sorting with a union or intersection of disks algorithm.
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The proof of the lower bound requires an ,Q(N log N) time lower bound
for sorting under tile same model of computation used to construct the N
disks di from the N reals ti . Since the construction of circles uses the
functions sine and cosine, a model of computation with only linear
functionn of the input is not sufficient. As for the intersection of
half-spaces, we may use Friedman's [43] result that sorting has an
fl(N log N) time lower bound even when arbitrary functions are allowed at

internal nodes of the decision tree Cnd tile output functions are analytic.
Since Sine and cosine are analytic, the ,Q(N log N) lower bound for sorting
carries over to tile union and intersection of disks.

3.2.3. The Inversion Transform

Our algorithm for constructing the intersection or union of N disks is based on the

properties of the inverion tranrform. We will first describe the two-dimensional

transform and then generalize to three (and higlher) dimensions. For more information

on inversion we refer the reader to Dodge [3G].

The inversion transform is determined by two parameters: (1) the center of

Inversion, and (2) the radius of inversion. For simplicity of exposition we shall

assume (for now) that the center of inversion is the origin and that the radius of

Inversion is one. If a point P has polar coordinates (R,e), then the inversion

transform of P is

(R,e) - (I/R,O).

Inversion maps a vecto: in the direction e to another vector in the same direction

but with its magiiitude "inverted." Note that inversion is involutory -- application of

inversion twice yields tile original point. Figure 3-9 illustrates another important

property of inversion in the plane. A circle that passes through the center of

Inversion transforms to a line that does not pass through the center of inversion, and

vice versa. Furthermore, the interior of the circle transforms to one of the

half-planes dcterrmined by that line and the exterior of the circle transforms to the

other half-plane. The properties of inversion in three dimensions are analogous. The

transform can be expressed in spherical coordinates as

(R, , ) 1 1/R, , )
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This transform is involutory, as in two dininnsions, and it also transforms any sphere

that passes through the center of inversion to a plane that does not pass through

the center of Inversion. The interior of the sphere transforms to a half-space

bounded by that plane and the exterior of the sphere transforms to the other

half-space.

L L

C c

Figure 3-9: Inversion transforms lines to circles and vice versa.

3.2.4. Algoritim for Intersection or Union of Disks

We will now exploit the properties of the inversion transform to construct a fast

algorithm for the- union or intersection of disks. We will first describe the simple

case where the circles bounding the N disks share a common point P, and then

generalize the result to an arbitrary set of N disks in the plane.

Figure 3-10 illustrates the special case where the N boundary circles share a

common point P. Let Ci denote disk I, for isl,...N. Since circle i passes through point

P, inversion about P transforms Ci to a half-plane Hi. It follows that the union of the

N disks transforms to the union of N hlf-planes:

N N

U Ci  U H.
iul i1

Similarly, if X denotes the complement of X, then the union of the Ci transforms by
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N N N
u c, -. u ii, n u,

which call also be solved as anl intersection of half-planes. Since N half-planes can

be int8Ysected in O(N log N) time, we have

Theorem 1 7: The union or intersection of N disks canl be constructed in
O(N log N) time when the circles b)ound1inig the N disks shiare a common
point P.

In general, however, the N circles will not hiave any point P in common. InI fact,

the disks may be entirely disjoint. Nevertheless, we can manipulate the general

problem so that it looks suifficirvntly like the special case that inversion canl be

applied to obtain a fast algorithm.

C

0

Figure 3-10: Special case for inversion: All boundary circles meet at point P.

Theorem 18: The union or intersection of N disks canl be represented
as a convex polyhedron in O(N log N) time.

Proof: We illustrate thle construction in Figurc 3-1 1. We first embed
the N disks in three dimensions wAitli the disks all located in the xy plane.
We then choose -an arbitralry point P that does not lie in the xy plane. For
each disk c there is a uniqlue sphere that passes through point P and that
intersects the xy plane at circle c.1 1 We can thuts represent the N disks

I IA sphere is determined by four paramcer:-, the three cocrdir.3tc5 for its center and the radius. A circle and a
noricoplarar point determine a unique ,phere bccaute requiringi the Sphere to pass througih the circle costs three
degrees of freedom and requiring the phcre to pal- thiou~th the point detcrmines5 the fotrth.
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in tl'e xy plane by N balis whose (spherical) boundaries share a common
point P. Inversion about point P transforms the N spheres to N planes, theIi balls to half-spaces, and and the exteriors of the balls to complementary
half-spaces. The intersection of 1N disks is thus represented by the
intersectioit of N half-spaces. Simiilarly, we represent the union of N disks
by (tlhe complement of) the intersection of N (complementary)
half-spaces. Since we can intcr.-oct N half-spaces in O(N log N) time. we
can represent the union or intersection of N arbitrary planar disks by a
convex polyhedron in O(N log N) time. 0.

Figure 3-11: General case for intersection or union of N disks.

3.2.5. Rolated problemns

We will now briefly describe a few issues related to the union of disks that we

have not yet covered.

1. We can generalize our technique for representing the union or
internection of disks to also allow subtrcting circular regions from a
union or intersection of diski. Since each circle maps to a plane in
three-space, there are two three-dimensional half-spaces that we
may annnciate with a given circle. One half-space corresponds to the
Interior of the circle and the other corresponds to the exterior. We
may thus relpre-ent any intersection of tlhe interiors of circles or their
complements by an intersection of half-spaces.

2. Suppose that we wanted to preprocess N disks so that given an
arbitrary planar point we could qluickly determine if the point lies In any
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of the N di,:ks. If wu reprezsent the4 un1ion) of 41he disks as an)
intersection of half-spaces, thlen this prulliai becomes the problem of
determininq if a point in the-pielie,- withlin a convex polyhedron.
This proli iS Is eqwvalcnt to locating a point within two planar
straight-line graphs. 1 2 As we mntiontcc in thc introduIction, location
of a point within at planar graph of size N cani be done in O(log N) time
given 0(N logl N) prelprocessitiq time and O(N) storage [70). We must
also note- that location of a point !in a set of circles is a decomposable
searching p~roblem [5].

3.3. Derivation of the Point / Flat Duality

The intersection of half-spaces involves a point / flat duality and convex hulls

whereas the union of disks depends On inversion (and embedding in a higher

dimension). In this section we s~how that these techniques are closely related by

deriving the lpoint / flat duaility as a Nimitingj case of inversion, linear transforms, and

a circle / point duality. In the construction we demonstrate the relationship

between Convex hullIs And the unIion1 Of disks or half-spaces.

Figuro 3-12: The union of (the interiors of) circles that meet at a point P.

In the previous section we constructed the union of (the interiors of) N circles

12ipybrvak thec cornvci polyhcd~on into LIPPER a.1LOWNER pan;,4 and project bcth parts orthographically to
plQaa gri.PhS in theC AVy PLIr. If I It'("drfjf~ por.l P prole.13 to a pianar point in region A of the UPPER
graph and regicun S of the LOWER graph, ther P lies v.;htn the cenvieA~ polyhedron iff P lies below face R and
above face S of [lie polyhtk~ot..
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with a poini. P itl common by firsL using inversion to transform the interiors of the

circles to hlf-plan. s. In Figtire 3-12 we demonstrate an alternate solution:

Construction of the Union of N Disks whose Boundaries Share a Point P

1. Let Ci. i = 1 .... N be a set of disks whose boundary circles meet at
point P. Transform each of the N disks Ci to the points Pi diametrically

opposite point P. (.This is the Circle / Point duality.)

2. Construct the convex hull of the set of the points Pi, i 6M 1 . N
augmented with point P.

3. A disk Ci is nonredundant in the union of the N disks iff its transform Pi

is a vertex of the convex hull. To obtain the circular arcs defining the
union we simply transform the vcrtices of the convex hull back to

di.ks, obtaining the endpoints of the arcs from the points where

neighboring disks intersect.

Since the most expensive step in the algorithm is the construction of the convex

hull, the total time is O(N log N). We will omit the proof. that tie algorithm correctly

constructs the union of the N circles because, as we shall see, it is essentially

equivalent to our proof of the alrjorithm for intersection of half-spaces.

Figure 3-13: The union of half-planes transforms to the union of disks.

In Figure 3-13 we illustrate the union of a set of half-planes, each of which does
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not contain point P.1 3 B y iilvcrLiM.lij the hialf-plane(_s about point P we transform the

union-of half-pkinors problem to a union of disks problem whiere the circles bounding

the disks all oee at. point P. But as kwe just sitw,, we canl construct thle union of the

disks by trannforming thrin to points and colntructing thle convex hull of those

points (and puilt P). We will nowi describe thei transform algebraically.

To make thle miathiema tics simpler we can assume that the point P lies on thle

negative y-axis:

P =(0,11), R <(0.

Our algorithm inverts each half-plane about point P, obtaining thle interior of a circle,

and then mnaps the circle to the point diametrically opposite P. We express this as

y = aix + bi -a1/(b1-R), P.+ 1/(b1-R) ),i i 1 . .. N.

To show how this relates to thle point / fiat duality that vwe used in Section 3.1 for

intersecting half-planies, we must now use a trick.

Recall fromt Step 3 of our algorithmi for constructing the union of the disks, a disk

Ci is nonredlundiant iff its transformn Pi is a vertex of the convex hllJ. If the convex

hull is translated, streatc'ied, or rotated the vertices will still remain vertices and the

paints inside the hull will remain inside the hutll. In particular, thle transform

[x:] [R 0.12[x] + [R3tR0

applied to the point P and points Pi. i =1, . .., N will not affect our determination of

which points lie onl thle convex hull and whiich do not. Our new transform, inversion

of a half-plane about point P followed by the circle / point duality and our linear

transform, canl be expressed as

13Wo can aiicrrn.iily think of the unlion of half-pIl.nes as the corn~ieniont of the intersection of the
complementary halfr-planes,
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ax-aR -b 

Note also that point P transforms by

P z(O,R) - (0, -R).

Taking the limit as R -C we obtain

y aix+b i  -* (ai,bi)

and for point P

P z (O,R) " (0, o).

The vertices of the convex hull of the points (abi), i = 1 .. N augmented with

(0,+o) are the vertices on the bottom part of the convex hull of the points (ai,bl)

(and (O,+n)). This is exactly the characterization given for intersection (or union)

of half-planes in Section 3.1. We have

Theorem 19: The point / flat duality is a limiting case of inversion
followed by the circle I point duality and a lincar transform.

3.4. Summary

In this chapter we have presented several important transforms and techniques:

- A point / flat duality --

This maps points to flats and flats to points. Since there
are already a number of algorithms for point problems, this
transform finds greatest use in transforming problems that
are expressed (or expres.ible) in terms of flats to problems

that involve points. Two of the important properties of the
duality that we described are

(a) it preserves above/belowness between points and flats,
and

(b) it preserves distance between points and flats in the xK
coordinate, and thus preserves incidence.

l-I
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- Embedding into a higher dimension --

This gives another degree of freedom to the problem that
allows aplplication of techniques not applicable to the

original problem -- circles cin become spheres, lines can
become pli"s, etc. Since the higher-dimensional object
has a degro:e of freedom thaL we. cin choose arbitrarily, the
objects can be chosen to conform to an expecially simple

case (all N sphcres have a point in common). In most of the
applications of embedding in a higher dimension (in this
thesis) the problem is first expressed in terms of circles

and then embedded into a higher dimension and
re-expressed in terms of spheres.

- Inversion --

Inversion is a circular transform; circles map to circles
(where a line is considered to be a circle of infinite radius).

In particular,

(a) a circle that passes through the center of inversion maps
to a line that does not pass through the center of

inversion, and

(b) the interior of a circle that contains the center of inversion
maps to the exterior of a circle that contains the center of
inversion.

In three d-mensions we have the same relationships
between spheres and planes and in K dimensions between

K-spheres and flats. Inversion is also involutory --
application of it twice yields the original object. The main
use for inversion (in this thesis) is transforming problems
that are expressed (or expressible) in terms of circles or

spheres to problems that involve lines or planes and for
which fast algorithms are known.

In this chapter we have also seen an application of convex hulls in the intersection

of half-spaces and in tile relationship between inversion, linear transforms, and the

point / flat duality. In later chapters convex hulls will be applied to several other

problems that involve a "network" of linear parts.
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4. Constrction of carest and Farthest Point Diagrams

Geomrtric transforms are important tools in the construction of many different

kinds of neurest ittnd farthest point diagrams. These diagrams include (nearest and

farthest point) Vornnoi diarjrams in Euclidean and spherical spaces, and the (nearest

and farthest) edge diagra&iiis of a convex polygon. Each of these diagrams is a

IItesselation of sipare, into sets of points close.st to (or farthest from) the elements

(points or edges) defining the diagram. We will find in each case that it is useful

first to expre... thn.problen in tcrms of a set of circles that define the diagram and

then to emlbe(d the problem iNto a hiighir-dincnsional Euclidean space, which allows

us to unn techniclun.. not aplplicable to the original problem. In the following sections

we describe these diagrams and algorithms for constructing them.

4.1. Euclidoan Voronoi and Dclaunay Diagranis

Voronoi diagrams (also called Thiessen diagrams or Dirichlet tesselations) find

application in cluster analysis (51], construction of contour maps (29], construction

of Euclidean minimal spanning trees (93], crystal growth (46]. and several

interesting problems in geometry [91]. We can easily show an [)(N log N) time

worst-case lower bound by demonstrating that any algorithm that constructs a

Voronoi diagram can be used to sort [91]; the challenge is to construct an

O(N log N) lime algorithm. Shamos .[,9 describes an O(N log N) time

divide-and-conquer algorithm for construction of the planar Euclidean Voronoi

€liaosram nid I im. andcl Woe, (#71 (lescrihe an O(N Ing N) time nlorithm for the I and

L,-, metrics In the plane. Drysdale and Lee [37] present an O(N c(log N)1/ 2) time

algorithm for the Voronoi diagram of line segments (and other planar objects), which

they have improved to O(N Iog7 N) time. Kirkpatrick (59] presents an O(N log N) time

algorithm for constructing the Voronoi diagram of N planar line segments. Shamos

[89], Lee and Preparata [GG], Preparata [80], and Lipton and Tarjan [70] have

produced fast algorithms for searching a Voronoi diagram (or any other straight-line

planar graph).

The algorithm for construction of a Euclidean Voronoi diagram that we describe
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below [23] is not only a very uISCful result in itsclf, bUt it also serves as an example

of the use of several important algorithimic tools. We use thle technique of

embedding into a highnr dimension and 6pplying inversion (as in the algorithlm for

union of circles) and we also use a convex hull algorithim (as in the intersection of

half -spaces).

4.1.1. Do'iiiition of Planar \Ioronoi and~ Dela U;Wly Dizorams

Let S be a set of N planar points suchi that no four p)oints are cocircular. 14 A

nearest point planar Voronoi cliagram of S, as picturedl in Figure 4-1, is a polygonal

network of N regions. For each point Pi oi S, region Ri is the set of all points of the

plane that are closor to point Pi than to mny of the othier N-i points of S. Given an

arbitrary point P in the plane, we can thius determine which of the N points of S is

closest to P by dentermining whichl of the N1 regions contains point P. The vertices of

these polygjonal regions are called Voronoi poins and the polygonal boundaries of

the regions are called Voronoi polygons. If a Voronoi polygon is bounded, then it is

constructed entilrely from edges3 of the Voronoi diag~ram. If it is unbounded, then it

includes two rays of thle diagram.

Each Voronoi point V of the nearest point diagram is eqluidistant from the three

points of S that are nearont V. This yieldr, a p~roperty ol Voronoi diagrams that we

exp~loit in tile alcloritlim of Section 4.1.3.

A point V is a Voronoi point (of the nearest point Voronoi diagram of S)
itt it is' the center or a circle that passes through1 thiree points of S but
does not contain any of the othier N - 3 p~oints of S.

The edges of a Voronoi diagramn connect pairs of Voronoi p~oints vwhose corresponding

circles meet at two common points of S. The rays tire determined similarly by one

Voronol paint from thle nearest point diagram and onc from the farthiest-point Voronoi

diagram (described below).

14Since any thrco noncolhrncar planar point.; deternioro a unique circle, four planar points are cocircular only in
degenerate cases.
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Figure 4-1: Planar Nearest Point Voronoi Diagram

(C) s

Figure 4-2: Fartliest Point Voronoi Diagram

A farthest point planar Voronoi diagram (Figure 4-2) is a1s0 a network of polygonal
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regions, but ragionl Rti thle set Of 1ll pointS "I thle plane that are farther from point

Pi tan ay other point of S. As for the nearest point diagram, there is a set of

circles that clefine the(, Voronoi points for a farthest point diagram.

A point V in a Voronoi point of the farthest, point Voronoi diagram itt it is
the center of a rircle that passas through three of the points of S and
contains all of the other N - 3 points.

It is important to note that only points that are vertices of thle convex hull of the N

points of S have nonenipty farthest point regions. This is because each Voronoi

point V of the farthest point diagram must he equidistant from thle three points of S

that are farthost f rom V. It is not possible to construct such a Voronoi point from

points of S that are not on the convex hull.

Figure 4-3: Planar Delaunay Diagram

Both tile nearest and farthest point Voronoi dliagramis have planar straight-line

duals, called Delatnirwy diagrams. Figure 4-3 illustrates the dual of a nearest point

Voronol diagirnin and Figure 4-4 illustrates the dual of a farthest point Voronoi

diagram. [Both of these dual diagrams form a triangulation of the points of S. The

vertices of each triangle of the (nearest point) Delaunay diagram (Figure 4-3)
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determine a circle that doens not contain any of the other N - 3 points of S. Similarly,

the vertices of each triangle of the dual of thle farthest point Voronoi diagram

(Figure 4-4) determine a circle that contains all of the other N - 3 points Of S.

(C) D(A

0)

(C)

(F)

(0) A

Figure 4-4: Dual of a Farthest point Voronoi Diagram

Since tile nearest and farthest point Voronoi diagrams and their duals are planar

graphs, tile number of Voronoi points is; at most 2N - 4 and thle number of edges is at

most 3N - 6 for N > 2 (50). Shamos (80, 91)] and Shiamos and Hoey (93] give more

information on Voronoi and Oclaunay diagramls.

4.1.2. reopresentation of Voronoi and Dclaun.-y Diagrams

The representation of Voronol and Delaunay diagrams should enable us to aCCess
conveniently all of the proximity information stored in the diagrams. This does not

require an exotic data structure -- we can aiccomplish it with a well-chosen set Of

arrays. Since thle rays of both the neare-st and farthest point Voronoi diagrams are
determined by one nearest Voronoi point and onc farthest Voronoi point, It is easiest

for Us to describe a representation for both the nearest and farthest point diagrams
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simultaneously. One suchi reproscnitation is the five-tuple

(S, V, E, StIE, EPtr),

where

S[1,11] is the X coordinate, and S[l.2] is th~e Y1 coordinate of point PI of
S.

V[Il ] is thle X coordinate, V[1,2] is ihec Y coordinate of the Ith Voronoi
point and V[1,3] is a one bit MiaC] Urat distinguisheCs the Voronoi points
of the nearest point dliagjram fromn those of the farthiest point diagram,

E[1,1]3 and E[l,21 point to the ty/o Voronoi points of V that determine
edge 1. Note that for a ray one point will beC from the nearest point
diagram and one will be fromn the farthecst point diagram. Furthermore,
we store Ihe edges sorted countci clockwise to make it convenient to
determine the Votonoi polygons associated witli eachi point J of S. The
first few edges of E define tile edges of tile neiirpst (and farthest)
Voronoi polygons of point 1 of S, thle succeeding edges of E define the
Voronoi polygon(s) for point 2 of S, and so on.

EPtr[l, 1 points to the first edge in array E of the nearest point Voronoi
polygon for point I of S. Similarly, EPtr[l,2] points to thle first edge in
array E of thle farthest point Voronoi polygon for point I of S (if it
exists).

VtoS~l, I], VtoS[I.2], ind[ VtoS[i,3] point to thle thiree points of S that
determine Voronoi poinit 1.

The representation for thec dLIaI nearcst and farthlest point diagrams is equivalent to

the representation for tile nnarest and fartliest point Voronoi diagrams.

4.1 .3. Planar Voronoi Diat-ra.' Algorithmn

We here combine the tools of thle previous Sect+iolls to produce anl O(N log N) time

algoritlhm for constructing a Voronoi diagramn of a set S of N planar points. The

algorithm takes advantage of the fact thlat tile Voronoi points of the nearest point

diagramn can b~e represented by a set of circles thiat eachi (i) pass through three of

the N points of S, and (ii) do not contain any of these N points in the interior. As

suggested in Section 3.4, whien we lave a problem tllat is expressed in terms of

circles, It may bp profitable to try to apply irversion~ to obtain an equivalent problem
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that involves linear comnponents rather tWan circular components. In this case (as

for the union of clinrks in Section 3.2) we must first embed the planar problem Into

three dimensions and express the ne problem in terms of spheres before we can

profitably apply iniversion. This is because inversion transforms circular (or

spherical) components into linear components only if the circle (or sphere) oasses

througjh the r~enter of inversion. We need the extra degree of freedom that we

obtain by emlyeddinrj in a higher (lii;ionslii to satisry this condition. The linear

(component) problem that we obtain torns out to be simple: construct the convex

hull of N traiiformed points. Furthermore, we call also obtain the farthest point

diagram from the some convex hutll.

Algorithm for Construction of a Planar Voronoi Diagram

1. Let S be a set of N p~lanar points located in the xy plane of
three-space.. Pick a point P in tlirce-space that is not in the xy plane
15.

2. Choose any radius of inversion 11) 0 and then invert the N points Of S
with respect to point P and radius R. (Section 3.2.3 describes
inversion.) Call this now set of N points S1.

3. Construct the convex hutll of the points in S' in 0(N log N) time (by the
'-algorithmn of Pre pcrata and I long [83]). All N of the points of S' will be
Oilb Meconve-x hull hrcatiM;e invers.ion abotit P maps all points of the xy
pline to a sphe~re, with P att thc aplex. (See Figure 4-5.) Let f be the
number of faces onl the convex liull and let the edge (if any) joining
faces Fi and Fj be denoted Eij

4. Eachi of the f facps Fi of the convex huuill determines a plane in
threr-space. Invert tlicsc f planes (with respect to center of

1Alho~ch.n~.Ih~. tc~ly.any point P otit!,ide th.. s, plane will wonk, we may encounter excessive round-off
error in a comile~r if P iS badly chosen. We want to choose -K and y coerasnates that (apprximately) center P
over the convev hillJI of the N points and choose the ,coordinate %a that it i not too close to the my plane (which
clusters the tran,.f armed point around P) arnd aszo not too far away fromn the my plane (which males all of the
transformed poitils appro* imately coplanar). It xmax' 1'min' Ymax* and ymnart the mx and min x a&d y
coordinattes amom' all of the N plarim points then let Px 2 (Xm, + Xmim) 12 . P, a (ymaX + V.n/ 2. and
Pz nw. (ga~md (ynux'min) ) / 4. Since we can find easiti' mmm witt it- in 0(N M.
we can choote a good point P in 0(N) time. i ( w
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invernioii P and radiius r,) to obtain f sphenres that intersect the xy
plane in f circles. The centers of these cir-ck(s are the Voronloi points
Vi. To clintingtiksh noarost and farthest Voronoi points we perform the
following simple test:

The plane of face F1 deiermincs two half-spaces, one
that contais thle entire convcx hull and one that contains
none of it. Lct half-space I li he the one that contains the
convex hull. If IlIi contoins point P then Vi is a Voronoi p)oint

of thc nearest point Voronoi (lingram. Otherwise, Vi is a
Voronoi p~oint of thle farthest point dingrami.

5. We obtain thec Vorono! points Vi 1rom the faces r-1 of the convex hull,
but to couistrucnt thec remaindier of the Voronoi dliagjram we must
examine, the ,ckjens. Each edgqe E. of the conIvex hllI corresp~onds to a
see nictt of the neare-st point diagrami, a seriment of the farthest point
C .iiagram, or a ray (for both ciiarramsi). To determine for anl edge Ei
which of these three poss.iilities is truc we use the following rules:

- If Vi and V* ire both nearest Voronoci points, then there is a Nne
segiment Connecting Vi and Vi in the nearest point diagram.

- If Vi andc Vj are both farthcat Voronoi points, then there is a line
segment connecting Vi and Vj in the farthest point diagram.

- If Vi is a closest Voronoi point andl Vj is a farthest Voronoi point,
then Vi anld Vi determine a ray in both the nearest and farthest
point Voronoi diagrams. The points Vi and Vj determine a line,
and the desired ray for thle nearest point Voronoi diagram is the
part of that line that starts at point Vi and does not include
point V j The ray starting at point Vjthat (does not include point

Vi is for the farthest point Voronoi diagram.

Althouigh it is clear that the above algorithmp requires only O(N log N) time and 0(N)

storage, it is not immediately obviouS that it alctually constructs the nearest (or

farthest) point Voronoi diagram. We must exp)l (1 ) why the centers of the circles

(goncratcd in Step 4 above) arc the Voronoi points and (2) why thc connection

rules (Step 5) for Voronoi points work. We will novi show this for thle case of tile

nearest point diagram. The argument for the farthest point diagram is similar.

Theorem 20: The centers of the circles generated in Step 4 of the
above algorithm are thle Voronol points.
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Figure 4-5: Planar Voronoi diagram and corresponding convex hull.

Proof: The proof is in two parts: (1) all of the points generated in Step

4 are Voronoi points, and (2) all of the Voronoi points are generated in
Step 4. To prove that the circles generated in Step 4 are centered at
the Voronoi points we must show that (a) these circles each pass through
three of the N points of S and (b) do not contain any of the other N - 3
points in the interior (Section 4.1.1). Part (a) follows from the fact that
Inversion is involutory (Section 3.2.3). We prove part (b) by
contradiction. Assume that the circle passing through points A, B, and C
of S contains another point Q ( S in its interior. This places point 0 inside
the sphere determined by points A, 8, C, and P. When we invert about
point P, the point 0' is separated from point P by the plane determined by
points A', B', and C'. Since the plane A'1'C' does not determine a
half-space that contains point P and also contains all of the other N - 3

points of S' it cannot be a face of the convex hull that determines a

Voronol point of the nearest point Voronoi diagram.

To prove that Step 4 generates all of the Voronoi points we simply use

the reverse argument. If Vi is a Voronoi point then the circle for Vi
transforms (by inversion) to a face of the convex hull of S'. Let A, B, and
C be the points of S that determine Voronoi point V. Tile points A', B', and
C' of S' determine a plane that contains all of the points of S' because all
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N - 3 other points of S lie outside the circle determined by points A, B,
and C. 0

Theorem 21: Step 5 of the algorithm correctly obtains the edges of the

Voronoi (jiaram.

Proof: The proof is in two parts: (1) all of the edges generated by Step

5 are e(dg1es of tile diagram and (2) all edges of tle diagram are
generated by Ste p 5. An edge Eij of the convex hull that separates

(nearest point) faces Fi and Fj maps to a line segment between Voronoi

points Vi and Vj. But the circles corresponding to Voronoi points Vi and Vj
meet at two of the N points of S because the corresponding faces Fi and
Fj share an ndgr, Fij. This is exactly tile characterization given for edges

of the Voronoi diagram in Section 4.1.1. Similarly, the rays are determined
by edges E.i where V is a nearest Voronoi point and Vj is a farthest

Voronoi point (or vice-versa). In this case, too, the circles corresponding

to Vi and Vj meet at two of the N points of S. 0

Since the Voronoi points and edges (and rays) connecting tile Voronoi points are

correctly generated by the above algorithm, we have just proven

Theorem 22: The algorithm constructs the Voronoi diagram in O(N log N)

time.

4.1.4. Fast Expectcd-Time Algorithms

The most expensive part of the algorithm for construction of a Voronoi diagram is

the construction of the convex hull. If tile convex hull can be constructed in fast

expected time, then the Voronoi diagram can be constructed in fast expected-time.

The O(N) expected-time algorithms of Bentley and Shamos [16], Eddy [39], or Floyd

[40] do not apply because their results depend on a sublinear expected number of

points on the convex hull, and for the Voronoi diagram algorithm there are always N

vertices on the convex hull.

Bentley, Weide, and Yao [18], on the other hand, describe how a planar Voronoi

diagram can be c.onstructed in linear e,. 1 ected-time. The only condition is that the

probability density of the underlying distribution must be bounded above and below

by (nonzero) constants. The algorithm does not make use of inversion. Instead, it
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applies an extension of Weide's (9] technique for an O(N) expected-time sort to

the planar Voronoi diagram problem.

4.1.5. Highor Dimensions

The K-dimensional Voronoi diagram algorithm is an extension of the planar

algorithm. We first embed the N K-dimensional points of S in K+l -space and then

invert them to N K+1 -dimensional points S'. We thcn construct the convex hull of S'

and obtain the Voronoi diagram by transforming the parts of the convex hull back to

K-space. To transform back to K-space we first invert each hyperface of the

convex hull to obtain a set or K+I-spheres whose intersection with K-space is a set

of K-spheres. These K-spheres each pass through K I points of S and are

centered at the Voronoi points. We obtain the other components of the

K-dimensional Voronoi diagram by connection rules similar to those in Step 5 of the

algorithm in Section 4.1.3. For example, if the K-sphere for Voronoi point Vi passes

through K of the K+ 1 points determining the K-sphere for Voronoi point V j, then we

draw a one-dimensional edge between Vi and Vj. It the spheres for a set of three or

more Voronoi points share K-1 points of S, then we draw a two-dimensional edge

between the Voronoi points of that set. (A two-dimensional edge between L points

is a convex polygon with L vertices.) The rules for three and higher dimensional

edges are similar. The time complexity of the K-dimensional Voronoi diagram

algorithm is dominated by the time to construct a K+1-dimensional convex hull of N

points. (See Section 1.1.1 for references to several convex hull algorithms.)

4.2. Spherical Nearost and Farthest Point Voronol Diagrams

Voronoi (liaJrams are useful for solving several closest or farthest point

geographic problems. If, however, the area covered by the points is large, then we

must take the curvature of the earth into consideration. The most obvious

approximation to use for the earth is a sphere. Nearest and farthest point Voronoi

diagrams on a sphere are defined in a manner analogous to their planar counterparts

and the algorithms for constructing thcm provide an interesting comparison with

Iwo
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those for the planar case. For example, we obtain the farthest point Voronoi

diagram of a set of N spherical points S by simply applying a nearest point algorithm

to a set S' of N points diamctrically opposite the points of S. There are two

different methods for constructing these diagrams in O(N log N) time. One involves

an intersection o lalf-soaces and the other obtains the dual of the Vorcnoi diagram

from the convex hull of the spherical points. We will describe only tile second

algorithm because it is simpler.

We take advantage of the fact that the spherical Voronoi diagram, as well as the

planar Voronoi diagram, can be expressed in terms of a set of circle, the Voronoi

points are the centers of the circlus (on the sphere) that (i) pass through three of

the N spherical points, and (ii) do not contain any of the other N - 3 spherical points.

As before, pairs of circles that share two of the N points determine the edges of the

diagram. We would like to express this problem in terms of linear components rather

than circular components.

One approach is to construct a spherical analog of the formula for the planar

Voronoi diagram algorithm: embed to a four-dimensional sphere, apply (spherical)

inversion (with respect to a suitable point P of the four-sphere), and construct the

(spherical) convex hull of the transformed points. Although this approach can

actually be made to work, it does not give us a problem that involves linear

components. A better approach is to emibcd the spherical Voronoi diagram problem

(which is a splhirical two-space problem) into Euclidr-an three-space. The circles

that define the spherical Voronoi diagram detcrmine the planes that bound the faces

of the (Euclidedn three-dinenSional) convex hull of the N points. This convex hull

can be converted readily into the dual of the sphcrical Voronoi diagram -- the

spherical Delaunay dialram -- and can be constructed i" O(N log N) time. Given the

dual, the Voronoi diagram can be produced in only O(N) additional time.
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Algorithm for Spherical Voronoi Diagram

1. Let S be a sct of N ) 3 points on the surface of a sphere such that no
four points are co-circular. Construct the convex hull of the points of
S (treating them as N points in Euclidean three-space) in O(N log N)
time by the algorithm of Preparata and Hong [83].

2. For each face F'i of the convex hull there is a corresponding Voronoi
point Vi on the surface of the sphere that is equidistant from the
vertices of face Fi. (Actually there are two such points -- Vi and the
point diametrically opposite Vi . Choose the point that is closest to the
vertices of face Fi.)

3. For en.ch pair of faces Fi and Fj that share an edge Eij construct an
arc of a great circle that connects points VI and Vj. Since there are
only O(N) faces and Pdges in the convex hull we can do this in O(N)
time.

The diagram that the above algorithnm constructs is the spherical nearest point

Voronoi diagram because each Voronoi point Vi corresponding to face Fi is not only

equidistant from tile vertices of face Fi but is also closer to these three points than

the other N-3 points of set S. As in the case of the planar Voronci diagram, we have

a set of circles that ensure the properties of the Voronoi diagram.

4.3. Nearest and Farthest Edcp Diararns

1lrvsnaltt and I -p r,71 d..nserihep the .nnsntrintinn of Vnronni diaorams of line

segments (and other geometrical obj-cts) in O(N c(l0o N), 2) time (which they later

improved to O(N (log N)2 ) time) and Kirkpatrick (59] has reduced this time to

O(N log N). A s petial case of this problem is the nearest (respectively farthest)

edge diagram for a convex N-Ojon. This diagr im is a tesselation of the plane into N

polygonal reglions such that each rngion i is the set of all points nearest to

(respectively farthcst from) edge I of the N-gon. Figure 4-6 illustrates a nearest

edge diagram.

The problem of constructing a nearest edge diagram is presented by Shamos
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[89] as prohlom POLO1- in his worli-bcoo!. One interest'lg application is thlat once we

have constructed the nicircst edge diagram, we canl solve the problem of

constructing the greatcst incircle of a convex polygjon (problem POUl 0) in 0(N) time.

Both Preparata and Lne describe O(N log N) timC soIlutionIs to this problem that are

not based onl gcometric transform~s r77, 70]. (Thiey call this problem "Medial axis of

a convex p~olygon.") In this section we describe an O(N log N) time so'ution that is

based onl the simp~le geomietric transformis of (1) embedding in a higher dimension

and (2) orthographic projection.

One of the main differences betweeni the nearcst-edge diagram and the others

described in tis- chaptor in that the clemanits defining the diagram are edges rather

than points. Wc can, however, still cxprcei.; it in terms of circles; since each vertex

V of thle diagram is ediilidstant from the three nearest cclrcs of the N-cjon, V is the

center of a circle that is tangent to three edges (bult does not intersect or contain

any of the other N - 3 edges). This -Ljggc,-ts thant we might try to apply the formula

that we used for thie Euclideain planar Voronoi diagram of N points; embed in

Euclidlean three-space, invert thle edges withi respect to a point P that is not in thle

xy plane (producinlg a connected sct of circular arcs), and construct the convex hllI

of the transformed elements. This would work well if we had a fast algorithlm for

, 14 ~ construIcting tile Convex hull1 Of a Set Of (connected) circular arcs in three-space.1 6

There is, hiowevpr, another way to embed this problem in three-space that produces

a three-dimensional p~roblem that involves only linear components.

The N circular orcs all dctermnine circles that pass through p)oint P. For any one of

these N circlesC there is an infinite number of spheres that pass through (all of the

points of) Ci. We canl thus, represent the convex N'-gon (in thle xy plane) as a set of

N spheres (in three-apace) each of which passes through point P and still has one

degree of freedom. I low should the spheres he chosen?

r, r-f :'a n miI~ d its z.; pIcaltct t0 Voronoi diaeyrns of general ses of line
c! c -.ci.c ftr the reaider.
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. 1

Figure 4-az Nearest edge diagram Of a convex Polygon.

Since inversion maps spheres to planes and the interior of the spheres to

halt-SPacCs, we can represent the nearest edge diagram by an intersection at

halt-31)dc83. The problemu of choosing the spheres now becomes a problem ot

choosing the lialt-spaces. For each half-space the degree at freedom Is the angle

that it boundary makes with the xy plane. Since the edges of the nearest edge

diagram U~ an the angular bisectors of adjacent sides Of the N-go we choose

halt-spaces whose boundaries meed directly above these angular bisectors. This

gives us the following algouithm:
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Algorithm for Nearest (Respectively Farthest) Edge Diagram for a Convex
Polygon

Input: N -- ntmbp.r of vertices in the convex polygon. X[I:N], Y[1:N] -- x and y

coordinates of vertices of the N-gon (counterclockwise order).

Output: Nearest Edge Diagram The representation is similar to the representation for

an intersection of half-spaces (Section 3.1).

Time: O(N log N), Space: O(N).

1. Let the convex )olygon lie in the xy plane of 3-space. For each edge
e i of the polygon construct the unique plane Pi that (a) contains that
edge, (b) makes a 45 degree angle with the xy plane, and (c) lies
above the polygon (rather than below it). For a nearest edge diagram,
let hi be the half-space that lies below plane pi. For a farthest edge
diagram, let hi lip above plane pi.

2. Intersect the N half-spaces hi in O(N log N) time (Section 3.1).

3. Project the intersection to the xy plane. (This amounts to throwing out
the z coordinates of the vertices of the intersection.)

The above algorithin does not make any distance measurements to construct the

nearest (or farthest) edge diagram. Instead, it relies on the symmetry induced in

Step 1 by constructing all planes Pi at the same angle (45 degrees) from the xy

plane. We can generalize this to weightrd distances wi from the edges by simply

letting the slopes of the planes pi be set to the weights wi .

4.4. Summary

We have described three types of diagrams, planar and spherical Voronoi

diagrams of sets of points, and (nearEst and farthest) edge diagrams for a convex

polygon. Since erch of these problems Involved Euclidean distance between the

elements defining the diagram, we found it useful to express each problem in terms

of circles. We then embedded the problem in a higher dimension and, when

necessary, expressed It in terms of (carefully chosen) spheres and applied
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inversion to obtain an ecluivalent prolnlP.m expressed in terms of linear components..

For the planar Voroanoi diagranm problem we embedded the plane into

three-diineansinns and applincd inversion to obtain a convex hull problem. The circles

defining, the planar Voronoi diagram are centered at the Voronoi points and each

pass through three of the N points but cdo not contain any of the other N - 3 points in

their interiors. These circles become sphercs when embedded into three dimensions

and, when inverted. become the planes that bound the faces of the convex hull.

We were able to solve the spherical Voronoi diagram problem directly as a convex

hull problem. This is because the circles defining the diagram pass through three of

the N spherical points but do not contain any of the other N - 3 points. When the

spherical Voronoi diagram problcm (which is a spherical two-space problem) is

embedded into Fuclidean three-space, these circles become the planes that bound

the convex hull of the N points.

We constructed the nearest (respcctively farthest) edge diagram of a convex

polygon by embedding into three-sliaca and intersecting half-spaces. Each of the

circles that dripfine the nearest edge diagram is tangent to three of the sides of the

convex N-gon and does not contain any part of the other N - 3 sides in its interior.

By embedding Into Euclidean three-space, al)plying Inversion, redefining the problem

in terms or spheres, and then applying inversion again we obtain a problem of

Intersecting half-spces. But, as we saw in Section 3.1, the intersection of

half-spaces is solved by constructing the convex hull of a set of points.

In the next chapter we will find even more uses for convex hulls.



24 December 1070. Geometric Transforms PAGE 80



24 December 1070. Geometric Transforms PAGE 81

5. Searching Tesseltions

In this chapter we demonstrate how a search of a tesselation (Section 1.1.4)

arises in both linear programming and computing the diameter of a set of points.

Both of thesc problems invite the use of an orthographic projection to reduce a

K-dimensionni prol:elm to a K-Il-dimensional problem and furthermore provide

interesting applications of the point / flat duality transform (Section 3.1.3.3). The

diameter of a set of points also provides another application of the convex hull of a

set of pointS.

5.1. Linear ProSramming

Linear progranmming is ,n important technique for optimizing a linear function

subject to a set of several linear constraints. If there are K variables and N

constraints, we may interpret each constraint as a half-space in K-space and the

feasible region satisfying all of the constraints as the polytope that is the

intersection of N K-dimensional half-spaces. One of the vertices of the resulting

polytope is an optimal solution for the linear program. The linear programming

problem is to find this vertex as quickly as possible.

The standard method or solving linear programming problems is the simplex method

(and lts vnriant.n) (2J8. In tlhe worst case, however, the simplex method will require

exponential time (80. 55]. Kelly COU,] has shown that for a model of linear

programming with N relevant constraints in two variables chosen independently from

a given distribution, the expected number of iterations is O(N). Since each iteration

costs, in this case, O(N) time, tie expected time for linear programming in his

two-dimensional model is O(N2 ). In general, however, the expected-time of the

simplex method has not been adequately analyzed, although empirical results

indicate that it may be bounded above by a low degree polynomial In K and N C381.

There nre alternatives to the simplex method. Khachian [44] has produced an

algorithm for solving linear prooramming with integral coefficients that costs only

polynomial limp (iii the size of the input) in the worst case. His method, however,

depends strongly on the fact that the cnefficients are integers. Another approach

L ,..-.
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is to intersect the N K-climensional half-sp~ace s to construct explicitly the feasible

4 region and then evaluate thc objective function at each vertex. For K = 2 or K X 3

variables we may construct the intersoection and solve the linear programming

problem in 0(N log N) worst case time alnd (whcn thc expected number of

nonredunclant conistraints~ is 0(NP) for some p) < 1) 0(N) expected-time

[94, 106, 84] This is, in the worst case, better than the simplex method, which may

take 0(N 2)tm in th(,,p cases. It is not, however, generally considered advisable

to construct exp~licitly the entire feasiblu region when we need only tile vertex

corresponding to the soluition. The simple-.x method certainly avoids that problem.

We now describe anl approach toward a better solution.

D',. '

*E ~
S.A

G FF *S

'SEE

'S' 
e '

Figurc 3-1: Transform of LP problem to vertical line and convex hull.

Dantzig [213] desrribes an alternate interpretation of the simplcx method that is

based onl the point / flat dluality transform. The polytope obtained by intersecting

the N K-dimensional half-spaces transforms to the convex hull of N points in

K-space and thle (linear) objective Noction transforms to a vertical line (in the K

coordinate) in K-space. (See Figure 5-1.) The linear programming problem itself is

transformed to the p~rolem~ of dleterminingj whiich face of the convex hutll this vertical

line intersects. When we orthogrophically lproject the convex hull to a tesselation

and the veriical line to a p)oint in K-i-space, we obtain a problem of locating a point

In a tesselation. (See Flrjure 5-2 for anl illustration of the two-dimensional case.)

This does not ilnnic(liately lead to a (provably) faster linear programming algorithm

than the simlex method, but it does provide another way to approach thle linear
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programmningj prob~lemn.

* Figure 5-2: Transform of vertical line and convex hull to a point and a tesselation.

5.2. Dianioter of a Sotk o,& Points

The diameter of a -set of pohIts is the distance between the two farthest points.

This quantity often-arises in prob~lems of cluster analysis (51]J because a set of

points that are all near each other makes a better cluster than a set of points that

are spread for apart. The straightforward way to determine the diameter of N
points is to compute all e(N) intcrpoint distances and return the maximum.

Depending on the metric and the number of dimensions, however, there may be much

faster algori thmts.

For K a 1 dimension all N points lie on a line and the diameter is the distance

between the points with maximum antd minimum coordinate, which can easily be found

* In 0(N) time. <In fact, r3NI2 - 21 comparisons are necessary and sufficient

[76]). For two or more dimensions the choice of metric is important. The L, or LOO
diameter of N points in K dimensions cain be easily computed in 0(2KN) or 0(KN) time,

respectively,1 7 but the Euclidean canie may be more difficult. For two dimensions

17The diameter of a "et is determined by 1110 MOst e'Ytren1Q 0ints in CACti Of the dieC~tiOna determined by the
faces of the unit "Sphfere' Since the unit snhert for the L. metric hai 2k facts. and the unit schere for th ee
moviec has 2K faces, we can find the "xReme pomnts in O(2'f1) anid O(KN) time, r*3*eetivety.
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the best known Euclidcan diameter algurithms run in worst-case time O(N log N)

[89, 1]. For three dimensions Yen [102] has produced an O(N1 .8) time algorithm

and for K dimensions O(N2 " 4(K)) timc, where o4(K) =2 (K + 1).

We will present an 0((N + K) log N) tira algorithm for the three-dimensional case,

where K is the number of pairs of antipodal vertices on the convex hull. To achieve

this time we apply a l)oint / flat duality combined with orthographic projection to the

components of the convex hull of the set of N points to obtain a problem of locating

points in an outerplanar straight-line graph. In Appendix II we describe a

relationship between the Euclidean diameter and an empty-intersection problem that

may lead to an j(N log N) time lower bound for the diameter problem. In the

following sections we present O(N log N) time two-dimensional Euclidean diameter

algorithms, the O((N + K) log N) time three-dimensional algorithm, and then discuss

fast expected-time algorithms, approximation algorithms, higher dimensions,

applications, and some unsolved problems.

5.2.1. Diameter in Two Dinnsnions

Shamos [91] describes an O(N log N) time algorithmm for computing the diameter of

N points in the plane. The algorithm that we present is essentially equivalent to his,

but it is expressed so that it generalizes to a fast three-dimensional algorithm. We

first present a theorem that reduces our search for the diametrical pair of points to

the convex hull.

Theorem 23: (llocking and Young r52], p. 207) The Euclidean diameter

of a set of points S is determined by two points on the convex hull of S.

If all N or the points of S are on the convex hull, then we have not reduced the

size of the problem. We have, however, simplified it by reducing the problem of

computing the diameter of a set of points to the problem of computing the diameter

of a convex polygon. For our new problem we have the following theorem:

Theor.m 24: (Yaglom and Boltyanskii [100], p. 0) The diameter of a
convex ri ure is the maximum distance between parallel lines of support
of this figure.
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Figure 6-3: Convex hull and parallel lines of support.

In Figure 5-3 we illustrate two (parallel) lines of support L1 and L2 - In general, a

line of support passes through (at least) one boundary point of a figure and lies

entirely on one side of that figure. Pairs of points (of the figure) on opposite

parallel lines of support are called antipodal points. In Figure 5-3 points A and E and

points B and E are antipodal. We are interested in the antipodal pairs of vertices

determined by the lines of support for the convex hull of S because one of these

pairs determines the diameter of S. Our next theorem gives a bound on the number

of pairs that we will have to examine.

Theorem 25: For a convex polygon of N vertices there are only O(N)
antipodal pairs of vertices.

Proof: As we rotate parallel lincs of support L and M about the convex
polygon, the antipodal vertices de.termined by L and M change only when
either L or M becomes coincident with one of the N sides. We may thus
generate all of the pairs of antipodal pairs of vertices by recording all
antipodal pairs when eitier L or M contains a side of the polygon. If line L
contains a side, then it passes through two vertices and similarly, its line
of support M will pass through at most two vertices. (In fact, only when
the polygon has parallel sides can both L and M simultaneously pass
through two vertices.) There are therefore at most four antipodal pairs of
vertices generated each time a line of support passes through a side of
the polygon. Since there are only N sides of the polygon, there are only

O(N) antipodal pairs of vertices. 0

-, .IL.~
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We slow hlave. onourjh information to outline ouir two-dimensional diameter

algorithm:

Outline of Two-Dimensional Diameter Algorithm

1 . Construct the convex hull of thle N planar points.

2. Generate thle O(N) antipodlal pairs of vertices from thle lines of support
of the convex hutll.

3. Compnre thle distances hetvwmrn (ea ch pc),,ir of antipodal vertices and
report thle Ma1xinininl as thle diamueter.

We Canl constRuct tile Convex hUll (Step 1) in 0(N log N) time [43] and easily

comp~are. thle distances between antipodail pairs of vertices (Step 3) in only 0(N)

time. We thus have only to determine how fast we canl generate thle 0(N) pairs of

antip~odal vcrticer. (Step 2). Inl thle remainder of this section we show two

algorithms for generating them in 0(N) time, making thle total time for our diameter

algorithm O(N log N).

Shamos [91] describes in detail hlow to generate the 0(N) pairs of antipodal

vertices of a convex polygon in 0(N) time. After finding the first pair he generates

the oilier pairs in a counterclockwise scan about the polygon, maintaining parallel

lines of suipport at all times. For example, in Figuire 5-3 line L, passes through

vertices A and B and parallel line of su~pport: L2 lCssC through vertex E. We can

rotate L, cotinterclockwine about vertex B and L2about vertex E until either L,

contains side CC or L2 coiitains Sidle IF. We dietermine which of thle two possibilities

occurs first by comparing the slopes of side~s EF and BC. In this case line L2 will

meet side IF before line L, meets CC because- 'the slope of EF is less than the slope

of BC. This means that vertices B and F are antipodal and that we will begin

rotating L2 about vertex F rather than E. We continue this procedure until thle

parallel lines of suulpport L, and L2 have traversed the entire convex polygon (and

have thus generated all of thle antipodal pairs of vertices).
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We coti modify Shanios' alejoi i so that it generalizes easily to the

three-diiiciwional case. The important feature that we extract from his algorithm is

that when we perform the O(N) time scan around the convex hull, the only

comparisons that we must make are comparisons of the slopes of the sides of the

convex litll. That is, the x and y coordinates of the vertices do not matter since we

compare only the slop~es of ilhe sids of thc polygon. This insight leads to a

one-dimensionl interp~retation ot the (originally) two-dimensional problem.
H ffG E F G H I A

UPPER hf-7f7-m m m IF
F a f g h i UPPER

a E a dLOWER

LOWER B b c 0  A B C

Figure 5-4: Transform of a convex hull to a line.

We Illustrate the transform in Fi~jure 5-4. The first step is to divide the convex

polygon i nto two parts, UPPER and LOWER. This ensures that when one of two

parallel lines of suipport meets the polygon at an UPPER side, the other line of

support meets it a LOWER side. We may define the transform of an UPPER side of

the convex hull as the slope of the UPPER line of support that contains it. We may

also transform an UPPER vertex V to the set of slopcs of all UPPER lines of support

that pass througjh V. The transform for LOWER sides and verticas is similar.

Furthermore, since we consider the leftmiost and rightmost vertices (A and E In

Figure 5-4) to lie in both the UPPERl anid LOWES Sets, they each have both an UPPER

and a LOWER transform. We now describe the transform algebrauically.

The transform maips the UPPER set of sides of thea convex hull to a set of poin'ts

on the linp nnd the LOWER set of sies to another set of points an the tine. The

mapping is simply a point /fiat duality followed by an orthographic projection
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y mix + 1) (ni,) (b ) (14)

where "y = nx + b" is the inc e r inl bY a side Of the convex hull and "(mn)" is

the one-dimn-nional point to wihich th sid, nmaps. The transform of a vertex V of

the convex hull is an int~erval onl the line. If V is the intersection of two UPPER (or

two LOWER) sidns that determinle the lines y = ni x + 1 and y= m2x + 1)2 then the

transform of V is the interval between (olic-dimiensional) points (il 1 ) and (mn2). This

is becauise all UiPPER (or LOWER) lines of support at V must have a slope between

(rni1) and (1112). if V is a lel"Lnust or rightmost point, then thle set of slopes of thle

UPPER (or L.OW17-) IilneS Of Suppor01t at V is an infinite interval onl thle line. For
examp~le, in Figure 5-4 the UPPER transform of ver',cx E is the interval (-X),e] and

the LOWER transform of vertex E is the intorval [,) where "ell is the slope of

side e and "d" is tile slope of side d1,

The transform gives, us all the information w'.e nccd to generate the 0(N pairs of

antipodal vo~rtices. For example, in Ficlure 5-4, if L1 is thc linecladeriined by side a,

then the paraillel linn of support L2 passes throughIl the vertex F. Equivalently, the

transform maps side a to point a and vertex F to interval F such that point a lies

*inside the interval F. Since side a is bounded by vertices A and B, we have thle

antipodanl pairs of vortices (A,F) and (FRF). We can generate all 0(N) pairs of

antipodal vertices by finding which intervals contain thle N p~oints a, b, c, etc.

Theorem 263: Given a convex polygon of N sides, we can gjenerate the
0OiN) -pairs of antipodal vertices in O0Q.) time.

Proof: When we rjr:nerate the UPPEr, and LOWER sets of points onl thle
4 line (Equation 14), the-y will he in sortorl order because the slopes of the

sides of the convex hutll are already sorted. We can thus easily scan thle
two sets to dectermnine which interval each point lies in and ultimately
generate thle 0(N) antipodal pailrs of vertices in 0(N) time. 0

In summary, we have

Theorem 27: We can compute thle diamecter of N planar points in
0(N log N) %Aurst-case time.

Proof: We first conntruct the convrx hull in 0(N log N) ([43]) time and
then compare the 0(N) antipodal pairs of vertiees in 0(N) time. To
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generate tle anltiplodtd piirs we may use either the scan around the
convex hull of Sha~iiws [011 or first transform the sides of tile convex hull
to points on a line and then Ierform an equivalent scan of those points.

5.2.2. Diameter in Threo Dirrnnsions

Many features of our algorithm for the diameter of a two-dimensional set of points

extend to three dimensions. We first construct the convex hull of the N points in

O(N log N) time (by the algorithm of Preparata and Hong [83]) to enable us to solve

the diameter of the set or points as the dAiamcter of a convex hull. To find the

diameter of the. convex hull we then Venerate the set of antipodal pairs of vertices,

one pair of which detcrines thle diameter. In this section we show hlow to generate

the K pnirrn of antipodal vertices in O((N + K) log N) time and that we can thereby

compute the diameter of1 N points in three-space in O((N + K) log N) time.

In the plane we used the concept of line of support to generate the O(N) pairs of

antipodal vertices. In three dimensions the corresponding concept is plane of

support. For each face of tle convex hull, say face POR, the plane of suppor,

passes through a vertex W of the convex hull. This generates the antipodal pairs

of vertices (P,W), (OW), and (RW). Although the convex hull has only O(N) faces, in

the worst case there May still he Q(N2 ) pairs of antipodal vertices. 18 When the

number of pairs K is less than 0(N 2 ), though, it is not obvious how to generate them

in less than O(N2 ) time.

Our first step toward generating the antipodal vertices is to divide the faces of

the convex hull into the two sets UPiPER and LOWER. (Tle plane that contains an

UPPER face lies above the convcx hull and the plane that contains a LOWER face

lies below the convex hull.) This division has the property that if a plane L contains

a face of the UPPER set, then the plane of support M that is parallel to L passes

I81:Mt . i* f" 1,.flt
2

) y mr,ri, ... ;f ram' . r. eq thi f,ni (n A *i. A , n I

of the point.s ,re of thn form (Co$ 81, 0, "sn 1,) w.her 9 Tr/2'(1 ±'/N).
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throurgh a vertnx nf the I OWH ,int. Similorly, n face of the LOWER set determines a

parallel plane of suppo, rL that pa s s through a vertex of the UPPER set. (We

consider the vertic. onn the hnindary of theU PPER and LOWER sets to belong to

both sets.) We niext ;how how we can transform the UPPER and LOWER sets to find

the antipodal vertices rluickly.

5.2.2.1. Transforin in Thrca Dinl: sions

To generate tlhe O(N) pairs of antipodal vertices we use an extension of the

geometric trans form that we used for the two-dimensional problem. In two

dimensions our choice of transform was motivated by the fact that the search for

lines of support involves only comparisons of the slopes of the sides of the convex

hull. Similarly, in three clinicnsions, the search for planes of support involves

comparisons of the slopes of the faccs off the cIonvex hull. Our transform for the

faces, edges, and vertices of the convex hull all follow the same schema:

The UPPER transform of a component of the convex hull is the set of

slope-pairs of all UPPER planes of support that contain it. Similarly, the

LOWER tronsform is the set of slope-pairs of all LOWER planes of support

that contain it.

Since only one plane of support contains a face of the convex hull, a face maps to

one point. An edge is contained by a set of planes of support with one degree of

freedom so an edge, map. to an interval of a line. Finally, a vertex of the convex

hull is contained by a set of planes of support with two degrees of freedom so a

vertex maps to a planar region. We now present algebraic descriptions of the

transforms of faces, edges, and vertices of the convex hull.

Transform of a Face

Let z = ax + by + c. be the plnne dle.termined by a face F of the convex hull. The

transform of face F is simply the pair of slopes (a,b), a point in the ab plane. We

may alternately view this transform as a combination of the point Fflat duality and

orthographic projection:

z ax + by + c - (a,h,c) - (a,b). (15)

<V"
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We next describe the transform of an edge and a vertex. Since the UPPER and

LOWER transforms are so similar, we present only the UPPER transform *for each

case.

UPPER Transform of an Edge

Suppose that two faces L and M of the convex hull have an UPPER edge ELM In

common. L.t the two planes L and M deternined by these faces be written

z = aLX + bLy + CL. and (16)
z sax + b.%y +CM. (16

We can write the line where plane.s L and M meet in parametric form as

(P ,Py,P.) u u C bL , uf Reals (17)

lam bM

where P (Px,PyPz) is some point in both planes and I, J, and K are unit vectors

parallel to the x, y, and z axes, respeentivety. For example, if the tine intersects the

xy-plane we can choose P as

r L bL 0]-1 r[CLI
P a (P XP YP ) X - a A, b . , 0 c 1%C 1I

A plane z ' ax + by + c contains the line of Equation (17) iff

Sb -11OO -bL  0 and Pz aP X + bP . (18)

aM bM -1

Since the transform of ELNI Is limited to UPPER planes of support that contain ELM,

we must restrict the solutions of Equation (18) to an interval defined by the two

points (aL, bL, eL) nnd (OM, bM, cM). The transform of edge ELM is the projection of
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an interval of tli li to the xy (at)) plane. We sumilarize our results in the

following theorem:

Thecorman 2S.: Let thc p~lanles L and M of Equation (10) be determined by
two -f0acC3of a convex Polyhedron that meet at an UPPER edge ELM. The
UPPER transforn of e(ic ELM is tile ;ct of points (a,b) oil the line

(bM. - b~a -(OAM - 411) 2 aLb)M - aMbL (9

* that lie in an iterval determiinedl by tile Points (aL, bl.) and (aM. bj i). If L
and M are both UiPPER planes then the interval lies between thle two
Points. If L is tIPPER but M is LOWER then the interval is thle ray from

poinlt 00 0~1 Wllt does not' include point (~ 1b).(Similarly when L is
LOWER and M is*UPI'F i.)

Proof: Ille line of Eciuation (19) irs fromu Equation (13). Since thle set of
UPPER planes of support that contain ndgc ELIA is connected, thle UPPER

transorm f edg EL i n interval of this line. Since the planes L and
M of Equationi (1 G) contaiin edge. ELIM, thle poinlts (aL-'bL) 'n "(Mb)ms
be onl thp UP11PER transiform of cedge. EUN iff planes L and M are UPPER
faces of thue convex jun11. Forthcrmc'nec, since thle faces L and M are the
extremre iinits that a plane of support can bc: rotated about edge ELM.
point (a1 ,b1L) riutst b P-n endp1oint' o1 thle interval if plane L is anl UPPER
plane or support and (aM.brM) II~LIst bc anl endpoint, of thle interval if plane

*M is anl UPPER plane Of SUpport. From these conclitions it follows that if
both L and M are 13PPFR l' tanes o support, then tkie interval must be
boctween the two points. If L is anl UPPER plane of support but not M,
then the interval is- a ray starting from point (a1.-b1 that does not contain

point (arM4bf)). Similary if L is LOW17ER1 and M is UPPER. 0

UPPER Transform of a Vertex

Suippone that 11 face.s meet at a ve.rte.x V =(Vx.Vy.Vz) onl thle UPPER part of the

convex hull. Nunimber thiese faceS inl C0111ltrClUCIkw1iSC order so that thle edges that

meet at vertex V are I1P. 3 , , rfl. (if vertex V lies onl the boundary of the

UPPER and LOWER pnrts then include only tliose edges in tile UPPER part.) Let thle

planes cleterminedc by tile. It facs be

If ray ri is the ray that originates. at point V and point. dlown edga Ei j+1 then

ria(Vx. Vy. Vz) + 11 (4i, 0i, Alji). 11 0 (20)
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where

T j RI S ja, bs :1
(V l11 al+ l YjZ aj bi -1 xi SG1)(1

.1,+1 b, 1  -1iai bi+ 2  -1

.(Note that the subscripts "i+1" and "i+2" are to be taken modulo H.) The first

determinant in Equation (21) deturniiiies thc line that ray ri lies in and the second

determinant determiner which of thc two possible directions ri should point. We may

now characterize the set of UPPER plones of support of UPPER vertex V.

Theorsmn 29!: Let V = (VxVyV 7) be an UPPER vertex of a convex
polyhedron at which the UPPEIr rays ri determined by V satisfy Equation
(20). A Plane z = ax + by + c is an UPPER plane of support at vertex V iff

V a Vx + bV + c (22)

and

-yi -< ar1 + b~i. i a 1, ... H. (23)

Proof: A plane z = ax+ by + c is an UPPER plane of support at vertex V
iff it passes through V and remn.ains above all the rays ri. Equation (22)
requires the plane to pass through V. The plane remains above the H rays~if(

Vz + twyi < a (Vx + uai) + b (V)y + L ci) + C, YU Z 0. (24)

By subtracting Epuation (22) and d;viding by u we obtain the inequality
(23). Conversely, if Equations (22) and (23) are satisfied, we easily
derive Equation (24) by multiplying (23) by u >- 0 and adding to (22). 0

For the trannform of UPPER vertex V we arc interested only in the slopes of the

UPPER plane,; of support at V. By Theorem 29 we have

Theorem 10: Let V be an UPPER vertex of a convex polyhedron at
which the UPPER rayrs ri dcternined by V satisfy Equation (20). The
UPPER transform of V is a convex polygonal region of the ab plane
determined by the inequalities

:i aai + b*i, i 1, H.
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5.2.2.2. Al ;orithim for Gencratino. Anti;,,ocal Vertices

We have jun~t seen how to transform) the faces of a convex polyhedron to points

in twe plane, (!(Ifes to edqws in the plane, and vcrices to convex polygonal regions.

Combining these we can trinsform both the UPPER and LOWER parts of the convex

hull to outerplanisr straightt-line graphs in Whe plinc, as illustrated in Figure 5-5. We

now present thn property of those graphis that allows us to find efficiently the K

pairs of antipodal vertices.

Lef V be ani IUPPER1 vf-rtcx of a convex polyhedron. The UPPER transform of V is a

convex polygonal region V of the at) plane. By dcfinition of V1, any UPPER plane that

passes throughl vu:rtex V transforms to a point in V iff it is an UPPER plane of

support. Any LOWER plane of support that inaps to a point in V is therefore a

parallel plane of support for some UPPER plane of support that passes through V. If

a LOWER vertex W maps to a region WN' such that VI and W1 overlap, then V and W

share parallel Planes of support and are therefore antipodal.

UPPER

LOWER

Figure 5-5: Search for p~lane's of s'uplorl maps to locating overlapping regions.

We have reduiced the problem of computing the diameter of N points in

three-space to the p~robilem of finding intersections of the regions of two outerplanar



24 Decemhb;r 1070. Geometric Transforms PAGE 96

straight-line graphs. We thus have the following outline for a three-dimensional

diameter algorithm:

Outline of Threo-Diriensional Diameter Algorithm

A 1. Construct the convex hull of thc N points.

2. Divide tile convex hull into the two parts UPPER and LOWER.

3. Map both the UPPER and LOWER parts to outcrplanar straight-line
graphs by the transform described above.

4. Find all of the pairs of regions in the UPPER and LOWER graphs that
overtap. Update the maximum distance between pairs of antipodal
vertices.

5. Report the maximum distance measured as the diameter.

We can construct the convex hull (Step 1) in O(N log N) time [83J and in O(N)

time partition the hull into the sets UPPER and LOWER (Step 2) and transform these

sets to outerplanar straight-line graphs (Step 3). Since there are only O(N) pair of

antipodal vertices. Step 5 requires only constant time. This leaves Step 4, finding

tle overlaps betweeCn the UPPER and LOWER outerplcnar graphs. We now describe

how to conduct thi. search in 0((N + K) log N) time, where K is the number of pairs

of antipodal vertibes.

Assume that there are O(N) faces on both the UPPER and LOWER parts of the

convex hull. The sitbproblem of Step 4 is thus to find the overlaps among two sets

of O(N) convex regions (with a total of O(N) edges). Two regions overlap iff (1) a

vertex of one region is contained in the other region or (2) an edge of one region

intersects an edge of another region. There exist algorithms that solve these two

Cases sepnrately; we only need to combine thci.

We can solve the first case, cicterming inclusion of the vertices in planar regions,

by a number of algorithms. Lee and Preparata (001 describe how we can locate a

point in the correct region in O(Iog 2 N) time, with only O(N log N) preprocessing time.
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We can thus locate the O(N) points in O(N log 2 N) time. Lipton and Tarjan [70] have

Improved the qu.ry time to 0(Iog N), yielding an O(N log N) time algorithm for the

O(N) points while using only O(N) storage, but the "constant factor" of their

algorithm is very large. Preparata [80) has produced a practical algorithm that

costs only 6 r log N 1 comparisons for each query but requires O(N log N) storage

and preprocessing time. Since we want to locate a set of points together rather

than just one at a time, however, we can use Preparata's O(K log K) +

O(N) + O(K log N) time algorithm (82] or Lee and Yang's 0((N + K) log(N + K)) time

algorithm [68] for locating a set of K points in a straight-line planar graph of N

vertices, giving us an O(N log N) time algorithm for locating O(N) points.

The second case, finding all K intersections of the edges of the two graphs, can

be solved in 0((N + K) log N) time and O(N) storage by Brown's modification (24) of

Bentley and Ottmann's (12] intersection algorithm (which is itself a modification of

Hoey's algorithm for determining if any of N line segments intersect [94, 91]).

The algorithm below finds all of the cdge intersections and all of the vertex

inclusions in 0((N + K) log N) time and 0(14) storage. It finds the edge intersections

by Brown's algorithm [24] and the regions containing the vertices by maintaining two

order relations (Ru an(i L ) for the two outerplanar graphs. Since the extra time

required to maintain AU and RL is only O(N log N) and the storage is only O(N), the

total time and storage bounds are the same as for the edge intersection algorithm.

This algorithm uses several simple data structures and functions:
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- Guand GL - two outerplanar straight-line graphs representing the
transforms of the UPPER and LOWER parts of the convex hull of the

*1 three-dimensional points,

- Nextint~ii. a next detected Intersection point for segment I (that is to
the right of the current x coordinate of the left-to-right scan),

0 - a queue of (<intersection-point or endpoint), (segment)) pairs,
sorted by the x coordinates of the Intersection points (or endpoints),

-RU (RLJ an order relation of edges from GU [GtL (evaluated at the
current x coordinate of the left-to-right scan),

-R -an order relation of line segments for both Gu and GL combined
(evaluated at the current x coordinate of the left-to-right Scan),

-Regions~i] = ordered pair (Regions[i).above, Regions(i).beiow) of the
regions above and below edge I n the graph (GU or GO) of edge 1,

*Point~iJ (xi, yi, zi) of the three-dimensional point corresponding to

region i Of GU Or GL,

-Vertlces~i] a (three) vertices of the convex hull that determine the
face that Maps to vertex I of GU or L

-Insert(PAO) - inserts (PA into the queue 0, where P is the left or
right endpoint of segment A or the Intersection of segment A and
another segment.

-Deletc(PAMQ - deletes (PA from the queue 0. Exception: If P.x x 0
the request is Ignored.

- nsert(S.R) COelete(S.,R)J - inserts CdeletC31 segment S in [from] order
relation nl (where the order is evaluated at the x coordinate of the left
endpoint of S).

-Above(P,fl) [Below(P.fl)) - returns the segment above [below] point P
In order relation n (where the order Is evaluated at P.x),
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- lnsert(S-flURL) [DeleteS,ROL) - inserts [deletes] segment S in
(froum] the order relation (RU or RL) to which S belongs (where the
order is evaluiated at the x coordinate of the left endpoint of S),

Above(P,RU,RL) [DelowA(PfUVRL) - returns the segment above (below]

point P in h order relation (RU Or RL) to which P does riot belong
(where the order is evaluated at P.x).

- Pairs(L,M,D) - computes the distances between all p~airs of points (ij)
such that i ( L and j ( M. if any of these distances are greater than D,
then D is set to the new maximum.

Algorithm for Search Step of Diameter Algorithm

proc lnter(A,B)
I Implement the modified insertion rule of [23) for segments A and B.;

P '-Intersectiot(A,B3);

L i-Nextlnt[A); M +-Nextint[BJ;
if P.x < L.x then

Delete(LA); Insert(P,A,Q); Nextlnt[A] 4- P
if P.x < M.x then '

Deiete(M,B,Q); lInsert(P,B3Q); Nextlnt[B] *.-P

1 Initialization;
0 4-(all 1pairs (P,i) vwhere P is a left or right endpoint of segment i,

sortecd by the x coordinates P.x )
R 4- RU +- R4- 0; - ! order relations for the edges of GU and GO;
Nextlnt[i).x (Y)X for all segments i;
Diam 4-0;
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(15,S) 4-(next (point,segment) pair on 0); 1 X coord of scan becomes P.X;
T 4- (other segment intersecting at P If the next pair on 0 is (P,T));
if P is the left endpoint of segment S then

lnsert(S.FO;
A +- Above(Pjfl); 8 4-Belovi,RR);

If A intersects S then Inter(A.S);
If B intersects S then lnter(B,S);
Pairs(PoiinteUins[Above(PRU-flL)I'.below], Vertices[P), Diam); 1 Three pairs;

Else if P is the right endpoint of segment S then
A 4-Above(P,R); B +- Below(P,R);
Delete(S,R);
If A intersects B then lnter(A.8);
Pa irs(Point[Rejions[Above(P,RUAL) ].below], Vertices(PJ, Diam); IThree pairs;

Else 1P is an intersection of segments S and T.;
Report(P);
Nextlnt[S].x 4- Nextlnt[T].x 4- Go;

Reverse(S,T,11); I Let S become the top segment.;
A 4- Above(PR); B +. Below(P.R);
If A intersects S then lnter(A,S);
If 0 intersects T then lnter(BT);
Pairs(Regions[S], Regioiis(T], Diam); ! Compare four pairs.;

We have just seen how to find all of the 0(K) overlaps of regions of two

outerplanar 3traighL-liiie graphs of size 0(N) in 0((N + K) log N) time and 0(N)

Storage. But, as shown above, this implies

Theorem 31: The diameter of N points in three-space can be computed
In 0((N + K) log N) time, wherc K is the number of pairs of antipodal
vertices on thc convex hull of the N points.

5.2.3. Refinements, Extcions, Rc!" tcd and Unsolved Problems

We have concentrated only on worst-case two- and three-dimensional algorithms

for computing the Euclldpan diameter exactly. In this section we briefly describe

results for fast expected-time, approximation, and higher-dimensional algorithms,

open problems rind an application to Chebyshev regression.
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1. One of the major open problems for the Euclidean diameter is proving a
nontrivial lower bound. In Appendix II we show that a diameter
algorithm can solve an empty-intersection problem for which an
Q(N log N) time lower hound has been proven for a weak model of
computation, but there is still no .(N log N) time lower bound for a
model of computation strong enough to construct a convex hull in
O(N log N) time. Shamos [02] conjectures tl.at the diameter problem
has a worst-case lower bound of R(N log N) time for any metric whose
circle has a continuously-turning tangent (such as the Euclidean
metric), buIt that if the circle has only a discretely-turning tangent
(such as the L, or L.r metrics) then we can compute the diameter in
O(N) time.

2. In our two-dimensional diameter algorithm the most expensive step is
the con.truction of the convex hull of the N points in O(N log N)
worst-case time. A fast expocld-time convex hull algorithm leads to
a fast diameter algorithm [01]. For example, if the expected number
of vertices on the convex hull is only O(NP) for some p ( 1, then we
may construct the convex hull in O(N) expected-time [16] and
therefore compute the diameter of N points in O(N) expected-time.

Our three-dimensional algorithm, however, takes not only O(N log N)
worst-case time to construct the convex hull, but also 0((N + K) log N)
time to generate the K pairs of antipodal vertices. If the expected
number of vertices on the convex hull is only O(NP) for some p < 1 and
the expected number of pairs of antipodal vertices is K, then we may
compute the diameter in O(N + K log N) expected-time. An obvious
open problem is to prove bounds for R, as a function of N for
interestiig distributions of points. (Conjecture: Let the straight-line
planar graphs thal, the UPPER and LOWER parts of the convex hull map
to be Gu and GL and let the regions of GU be Ui and the regions of GL
be Li . Foi any hounded region m of GU or GL let A(m,e) be the aspect
ratio of m -- the ratio of height to width -- when m is rotated an angle
(). For any unbounded region m with sides along rays r and s, let
R(m,G) he the aspect ratio for any (rotated) isosceles triangle with its
two equal sides on lines r and s. The number of overlapping regions K
is O(S 1 12 N), where S = max(ij,E) R(uLi,) / R(L,.E). This type of bound
arises in the maximum overlap of N rectangular regions [22].)

In D dimensions we can construct the convex hull of N points in O(N)
expected-time if the D coordinates of the points are independently
distributed [10] [30]. In this case the expected number of vertices
on the convex hull is only O(ogD- 1N) [10) and we can then compute
the diameter in only O(log 2 (D 1 )N) more expccted-time by the
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brutu-forcu method of cumparing all pairs of vertices.

3. The best known worst-case three-dimensional Euclidean diameter

algorithm is that of Yao £1021, which runs in O(N 1 "8 ) time. Yao has
also produiced a D-dimensional Euclicloan diameter algorithm that runs in
O(N 2 " c(M)) time where a(D) = 2(Du+i). (This algorithm does not

involve construction of a conve(x hull because a convex hull in four or

more dimensions may have ((N 2 ) edges ([49], p.193).)

4. Yuval's O(N log N) time two-dimensional Chebyshev regression
algorithm [1] reliers on a scan of a convex hull with lines of support.
We may apply our O((N + K) log N) time algorithm fur locating planes of
support of a convex polyheclroia to oltain an 0((N + K) log N) time

thren-dimensinnal Chebyshev rpgression algorithm.

5. We may approximate the Euclidcan diameter of a planar set of N points

within a factor of 1 + in worst-case time O(N + 1/) [7] (Section

6.1). (Shamos and Yuval [051 have previously described a technique

that leads to an O(N/((')) time approximation algorithm.) Bentley,
Faust and Preparata [7] describe a D-dimensional (-approximate
algorithm that runs in O(N + (1/E)2(D-1)) time. Open Problem:
Construct a faster D-dimensional (-approximate diameter algorithm or
prove a nontrivial lower bound for the D-dimensional (-approximate

diameter problem.

5.3. Summary

For both of the problems treated in this chaptcr (linear programming and the

Euclidlean diamter of a set of points) we have found that an apparently

D-diaensiofial problem can be expres.ed ns a D-Iclimcnsional problem. This is

because rach problem can be expressed as a search for a flat (or a pair of flats) In

which only the 0 - 1 slopes (but not the intcrcep.) are important. The transform is

chosen not only to reduce the dimensionality of the problem but also to represent it

in a form for which there are alrecdy fast algorithms. The point / flat duality

transforms the sparch of flats into a search of points and orthographic projection

removes the unneeded coordinate.



24 December 10910. Gcomictric Transforms PAGE 102

Ag~il wedktvi



24 Decemher 1979. Geometric Transforms PAGE 103

6. MiSCcilarncous Problcms fani %cc.mIIqu-s

In this chapter we jirosent two prohiciuls 111d solutions that do not fit into any of

the categories of the previouis chapters. The techniques applied to the first

problem (finding the approximate diianc&.ter of a set of planar points) provide a

contrast to the techniques for the exact diameter in the previous chapter because

the emphasis is on quickly producing an approximate convex hull rather than on a

fast search of an exact convcx hull. Our solution to the second problem (fitting

poits on a hemisphere) introduces a new transform called gnomonic projection that

has the property of mapping great circles on a sphcre to straight lines in the

Euclidlean plane.

6.1. Approxiniato Diamntcr of Poin-ts in~ Two Dimienisions

We presented an O(N log N) time algorithm for compuiting the exact Euclidean

diameter of N planair points in Section 5.2. In this section we describe two 0(N) time

algorithms for approximating the ELuc!idean diameter of N planar points within a

relative factor of (14.().15) To achieve the faster time we muost use radically

different techniqueIS. Wh~ereas the exact diameter algorithni uised the point / flat

duality and orthographir projection to obtain a problem of locating points within a

tessela ion, the first approximiation algorithmn ucsS rotation to define a metric whose

unit circle is a regular polyrgon and the second approximation algorithm extends the

ideas of the first by defining a transform based on a "pie-slice" diagram and Use Of

the floor function.

8.1 .1. First Approxiniato Diamcetcr A!poritafn

Shamos ind Ytival [051 dlescribed how to akpproximate the Euclidean metric with a

metric whose unit circle is a regular polygon -- the distance between two points P

and 0 is the width of the rmAllct regOLI!,r K-gon (of a particular orientation) that

contains both P and a. (Figure 6-1 illustrates the case for K a8 sides.) .This

10h oxcc o athUis problemi a CornueA held1 b,, 4111 Shamnos at Carmcgie-'Aeon University Witg Fall 1978.
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approximation has the property that as tI eUmber of sides of the regular polygon

increases the approximation improves. Our problem is to find a function K(() such

that we can approximate the diameter within a factor of 1 + by using a regular

polygon metric of K(() sides.

C

oo

E4 *

0

F

Figure 6-1: Points A through H determine the "octagon" metric diameter

Theorem 32: Let DIAMK be the diamcter of a planar set of points S in a
regular K-gon metric and let DIAM he the Euclidean diameter of S. If

K rn / sec'l(1 +E))

then

DIAMK _ DIAM _ (1 + () DIAMK.

Proof: The worst cases arr pictured in Figures 6-2 (a) and (b). In
Figure G-2 (a) the Euclidean diameter is determined by points P and 0 but
the K-gon diameter is determined by points T and U and points V and W.
Letting D(A,B) denote the Euclidean distance between two points A and B,
we define

r - D(T,U) D(VW) and R D(P,Q).
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Since Lhe matric is based on cl rnjular K-gon, the angte c. between lines
LT and LV and between lines LU and LW is

=a 2Tt / K.

The minimum i'osuible K-jon diameter r is achieved when points T and U
are placed so that line TU is perpcndictular to lines LT and LU and points V.
and-W are placed so that line VW is perpendicular to lines LV and LW -
From these conditions it foilows that

r a R cos(cz/2).

Since = (n - r) / r, we have

K k rRT/SeC-l(1 +)1.

In Figure 6-2 (b) the Euclid.an diamct.r is determined by points P and
Q but the K-gon diamater is dleterminedl by points P and 0 and points P

and C. LotUing r a D(P,0) * O(P,C) and R = 0(P,Q) we have

R-r _ stan(c2) = / I (s/r)2+(s/r) tan(o4/2) - 1,

r r

which is maximized at s/r = sin(cz/2), so that

S < cos(o{./2) + sin(od/2) tan(o4/2) - 1 = sec(cz/2)- 1.

Since c. = 2Tt / K, we have

K Z fn /sec'(1 +)1.

0

Teorm 33: If K = r n / se-(1 E) 1, then as E - 0,

K -- / (2()' / ' .

Proof: Since cos(x) x 1 - x2 /2 + .... the result follows. 0

First Approximate Di.nmctcr Algorithm

1. Let the number of sides of the regular K-gon metric be

K r n /sel(1 + 2).

I
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LV

LT

r r

(A) (B)

Figure 6-2: Worst cases for K-jon diameter.

2. For each of the directions (angles) 0, 21"/K, 4iT/K, 6rr/K, . .
2(K-1 )W/K find the most extreme of the N points. (This is equivalent
to repeatedly rotating the N points and finding the point farthest to
the right.)

3. Find the (exact) diameter of the (at most) K points determined in Step
2 and multiply it by (1 + (). This can be done in O(K) time by a Graham
['18] scan to construct the convex hll and a Shamos [89] scan to
compute the diameter.

Theorem 34: The Euclidean diamcter of a set of N planar points can be

approximated within a factor of (1 + () in O(N/(E )1/2) time.

Proof: By Theorem 32 the value chosen for K in the above algorithm is
sufficient for the f-approximation of the diameter. Theorem 33
establishes, that K = O(N/(E)I"',). Sincr. the most expensive step of the
algorithm is Step 2, we can compute the (-approximate diameter in O(KN)

= O(N/(() 1 /2 ) time. C
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6.1.2. Second Approximate DiktI,-r Alo.itilm

Although the first (-approximate diimetcr alorili takes only time linear in N. it

is also linear in 1/0/2. The second (-approxinate algorithm reduces the time from

O(N/(()I/") to O(N + 1 /() by using a tr'nisformu hascd on a "pie-slic e" diagram (Figure

6-3) and the floor function. (Bentley, Faust, and Preparata [7] describe a different

E-approxinate planar diameter algorithmn that also runs in time O(N + 1/).) Bentley,

Weide, and Yao [18] have used a simple "pie-slice" diagram for their Voronoi

diagram algorithm and Weide [09] has used the floor function to speed up some of

the algorithms in his thesis.

- -- - I

I 0 4
I I I

I I I

-I - -

I 01

Figure 6-3: A "pie-slice" diagram.

The "pie-slicn" diagram enables us to find efficiently a small subset S' of the N

points of S such that the diameLer of 3' approximates the diameter of S. The center

of the diagran, whre the K "slices" meet, can be any point on or within the convex

hull of S. (The slices (Io not each cover an angle of 2Tt/K radians, however,

because the computation of which slice a point lies in would then require inverse
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trigonometric functions. The slices are instead chosen to divide uniformly the slopes

in each of the owtants, leadinj to simpler computations.) From each of the slices we

choose one point to inserl in the subset S'. As illustrated in Figure 6-3, the point

that we choo';i: is either the frtlicst Infl, farthest right, highest, or the lowest,

depending upon the oricntation of the slic,. Wc now cletermine how large K must be

to ensure that the diameter of S' is within a factor of (1 + E) of the diameter of S.

• ~ ~ ' / / % .c  'I /%

C 
A 

-

A Op

D M / 5 +S. -

Pigroo:Fie 6-4: Thitw lu' stfratesote to posibe~e wrt cas"es.e Inlgorthm

caseor~ fDAs thp ulda diameter etrmie y point P pand Qoint the
approiaetioerIMn o e points Ahosnd fro inad T-sie linesa AP Kn

liesatisie

BOroof.i(a)re p-4 lle s t possil for case(B. The

Tasheo rim EidnIfthfiisr d iam eter o fibet lins o anr pnt then

therdiimetDi K alotlahoe )s oseA n fro inad T~Clce diagra of Kn

Proo, ho vr, re paraillustfrae the t perpesil r ors case In) bTh~

dashed lines in both figures outline the possible locations of thle center C
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of tile pie-slice diagram.

III case 6-4 (A) we have

P = 13 P ) (Ax .X(AY- CY ). AY) and
a0 (Q),. %) a(B.,- MBY- CY)I BY),

where

X K.

Letting DX =Ax - Bx and DY =Ay -BY

(1 )2 =D(P,0)
2  (DX - XDY) 2 + DY2

D(A,3)2  DX-2 + DY-2

Equation (25) is maximized as DY /DX o.Tile worst case for Figure
6-4 (A) is tuILs

K r8 /".(28)

For case 6-4 (B) we have

P = (P.,, Py) =(A,,. Ay - X(A,-C.,)), and (27)
o (OX, 0) (B - MBY-C ), BY).

Although the coordinates of point C cancelled out for case (A), case (B) is
worst when thle points A, B, and C form an equilateral triangle (Figure
6-5). We now have only to determine Ilhe worst orientation for this
triangle. If C is thia origin thcn A and B can be chosen to be two points on
tile unit circle centered at C;

A =(cos(O), sin(9)), and (8
B =(cos(O+rt/3), sin(O)+T/3)). (8

For line APl to remain vertil while line 130 rcniain.0 horizontal (a.s in Figure
6-4), we require that

n/4 9 -T/12. (29)

Combining Equations (27) and (213) we obtain
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(1- = D(P,Q) 2

D(A,F3) 2  (30)
F cos2(E)) G Sin12(e) + H sin(eWcos(O),

where*

F x(4 +4 6T;\ + 7%2) / 4,

G =(4 +. 2T3,\ + X2) / 4, and

H = (2X + T3X2 ) /2.

Equation (30) is maximized at tn2) 3 2

which is satisfied in the range of Equation (29) at

9 r/12. (31)

Pluggingj Equation (31) into Equation (30) we have

K r F8 f77 32 (1 +VT)/+ (32)

Since the value of K for case (A) (Equation (26)) is only linear in lIE1'2,
the worst case is care (B), with K defined by Equation (32). 0

With a little calculation we have

Theorem 36: If K is defined by Equation (32), then as E40,

K r~ 16 1 +./3/2/.
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-. 4'p

C

Figure 6-5: Worst case for second approximation algorithm.

Second Approximate Diameter Algorithm

1. Pick an arbitrary point from the set of IN points, to serve as the center
of -the "pip-M1ice" diagram. (Actually, any point within or on the convex
htill of the N points ran sprve as the center of the diagram.) For
simlicity Of exp)ositin We Will aSSuIMe that the center is the origin.

2. For an (-approximation to the Euclidlean diameter, let the number of
regions in the dliagraml be

K =r 4i 11 + 7/2 (1 + /1 -+.2Q ()
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3. For each of the N Points (Xi,yi) (a) deteo mine which bucket jthe point
falls in, and (b) compare xi (or y1, d ependini1 onl the bucket j)with the
most extreme valuec yet fou~nd for bucket j. We canl easily do part (b)
in constant time, but to avoidl a binary search of 0(log K) steps inl part
(a) we must use thle floor funl~ction. For the first octant the formula is

BUCKET <- 1 (K/8) (y/x) Ji

For the other octants the forimla is similar.

4. Findi thle exact diameter DIAMVK' Of the K extreme points (plus tile
central point of the diagram) deterined in Stc-p 3. Using a Graham
( 48] scani to construct the convex hull and then a Sharnos [01 ) scan
to find the hull's diameter, we canl compute DIAM' I 0(K) time. Return

DIAIMK =(1 +() DIAMK'

as the estimated diameter.

Theormin 37; Ani applroximation DIANMK of the Euclidean diameter of N
planar points that saitisfies

DIAM / (1 + E) DIAMK 5 (1 + () DIAM

canl be computed in O(N + 1 /() time.

Proof: Theorem 35 defines the value of K required to obtain an
(-approximate diameter from a "lpic-slice" diagrinm and Theorem 36 shows
that thin futnction In 0(N + IM/. 0

6.2. Fitting Points on a I-kmic-phcro

We can sometimes solve a problem involving points on a sphere similarly to the

corresponding problem involving points in a plane. For exaipe, the spherical

convex hull of N spherical points is similar to a planar convex hull provided that the

N spherical points all lie within a hemispic~re. If, however, there is no hemispherical

cap that contains all N points, then the (iterior of thle) spherical convex hull is the

entire sphere. The crucial test (for the spherical convex hull11 problem) is to

determine if thnre exists a hecmispherical nap that contains all N points. This

problem is a special ease of the problemi of determiining the densest hemisphere
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determined by N points on a K-dimensional sphiere. Johnson and Preparata

[56] have nhiowni the dlensest hemiisphore problem to be NP-complete when N and K

are arbitrary. (For fixcd K, however, th,7re is an O(NK1 log N) time algorithm.) In

this se.ctiun we will confino wurzelvci, to thec (.-i;,,-ycr) problem of determining if N
spherical points can all be fit into a heinispherical cap.

There are three O(N loci N) time algorithims for dictcrmining if there exists a

henisphere that contains a givcn set of N sphierical points. One solutionl is to

intersect the N half-npaces that contain the sphiere and whose boundaries are

tangent to the sphe~re at, the N points. If the resulting polytope is unbounded, then

the N pointr, can be fit into a hecmispherical cap. A scconnl solution is to construct

tile (Will Of the spherical Voronoi diagram inl 0(N log N) time (Section 4.2) and test if

one of the faces of the diagram can contain a hicmisphvere. But the most interesting

solution uses a tranziforn called a gnomonic prolection and( is due to Yuval

[1053. Vuival's algorithm uses gnomnonic projection to transform a problem that

involves great circles onl a sp~here to a p~roblem that involves straight lines in the

Euclidean plant-. TO start simly, we will first solve the two-dimensional case and

then extend ouir result to three and four dimensions.

6.2.1. The Two-Dimeonsional Caso

The two-(dimnellsiona I problem is to dletermine if there exists a semicircle that

contains a given set of N circular points. There are two ways in which we can solve

this in 0(N time. One way is to find the largest gap1 between any two consecutive

points of the circle. If this gap is greater than or equtal to a semicircle, then all N

points canl fit in the other semicircle.. Gonzalez [47] describes how to find thle

largest gjap bentween N unsorted points ol~ a line in 0(N) time (by using the floor

function). With a small modification, his algorithmn will find the largest gap onl a circle

and thus solve the two-dlimenrional problem in 0(4) time.

The largest (lap solution docs not, how.ever, extend easily to thle

three-clininional (sphecrical) prham 'horenas the gnomonic projection solution

does. Figure 0-13 ilustrates how tWe gniomonic projection algorithmn works. Let C be



24 December 1070. Geomewtric Transforms PAGE 114

Figue G6: nomoic )roectin o ponts il cicle

the ~ ~ ~ ~ ~ U cete oftecrl-n e ealn agn otecrl.Tegooi

maps to a pint r P -6 lnomoled rroeio of pointPi s o nl tebtohalofe circle hni

thes cter aofn Plabeclrle ad 91clt LWe alin, tgntoc cicle the trnormnour

prjcintasom ahcircular point P to a pointr probon the tanen lcne sov such) hi

th tli.om'11 e easto points on a' n circl woina. hstasfr nth neteC bes o

eac poin taP nln t, ther cire, two Spoeictse o th cre tatd gree tointsWeca

obtvatctise amiiy gnooivig ac o te project ed ponS ont lin onhee oxisthe tw

laes eicrl tharcntais al oircula points Pf iS the reho/ ofd the cienth i

ofpsto ' aoi prablle e.IfoitPiontebfoniffthcrltent

mas opoift Pr l(bll: Asruenh. We exst aS gomicprojecTthn totansrou

The orem ofS Let tile anst f upints on a ilcircle ith cente C1 L be
awline T1nen tso theato hairlf onf the thrce andtTofiN red tndgreenmpoints
obined T y a mndTar irically oleci( S a ont her L.theyreeit ao
seice thtcntiaalmfte points of Sin iL the red andwgren points 2
ofsertc S'm ar.( eadble. ht, o'L w pe irua oitt

Protof: pit 1) iApss t a pt th t e is t ah icircle TV th itconains,
thy upper ofcua S.oLet t he rights of peicrle Tp bc aled Toin tad i2
wereo TVi onuthfo top harl of h ice crl.etand i hoto alf.o

separntnterd n re lon;o. An pper circular point to the 1:to 2mp oagenpitt

thc left. of T2 and a lower circulair point to the ight of T2 map,: to a green
point to the right of T2'. Since semicircle T contains all N points of S,
there are only two cases to consider: (1) all uippor points- of S are to the
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left of Ti and all lowcr points arc to the kc.ft of T2, or (2) all upper points
are to 111o ricilit of T1i and l I-.11 ipaiin arn to the right of T2. For each
of thesenrl two it;es is eas, tco scrr by thr., above observations that the
poit 11 1'2' ,:para k,.s tit re d i-dk (:(n oiflis of L.

Part (2): As!snmf that tht7 rir;L ond gI noints of L I:re separable. Let
point T' I)(- any point on L thal t upora tns the redc and green points. There
arp. two circular points, Ti and Tel, th-ii project. to point T'. To complete
our proof we must show that one, of the two semicircles dectcrmined by Ti
and T2 contains all of the points of S. We omit the details because they
are very tsimilar to thc canec anialy:ids dluscribed in Part ( 1) above. 0

Thpcwr~m 39): Given N points on a circle, we canl determine inl 0(N) time
if tli -!re exists a semicircle that contains all N points.

Proof: Bly Theorcn 133 wie can transform the problem of determining
inclusion in a semicircle to a proble1m of determining separability of red
and fireun points on a line. Since we can (letermfine if the red and green
Points are scparahle by simpIly comparingq the min and max of the red and

green pointu, we can solve the tvwo-climrinsiomial problem inl 0(N) time. C

6.2.2. The Thr-ce-Dinicnsion.-l Care

The gnomonic lproj~ection is a principal feaLLure of the 0(N log N) time algorithm for

deteriniing ii N spherical points lie onl a :-lemisphericai cap. The definition of the

gnomonic p~rojection in three dimiensions is a straightforward extension of the

transform in two dimeonsions;

Let P be a point on a sphere with center C and let plane L be tangent
to the sphbere. The gnonionic projection of splicrical point P onto plane L
is the point P' such that points P, P', and C are collinear.

This transform maps great circles onl a sphecre to straight linies onl a plane, allowing

US to use known algorillhms for linear objects in the Euclidean planne to solve our

Spherical problem.

We anniglh the, labels red rind green to thn projcctions on plane L as in the

tWo-(ilimenlon~al cose. If linc segment PP' contoins point C, then we label P1 red.

Otlrwinn v/e label1 P' green. We nokw use, (Inomo;nic projaction to transform our

threv~-diun:;ionii p rol dem to a two-dimcnsional problem that we canl solve in
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FigUrc G-7: Gnomionic projection of p)oints oil a sphere.

O(N log N) time.

Theommr '10: 10r~ S be a sct of 14 points onl a sphecre with center C, L be
a plriiw 11101 in taI ontn to 111c: splwc~rt, and S' bc the set of red and green
point:- ohtainl;:d by (1nomon1ic.aly projccimf S onto L. There exists a
hemisplicrincal cap that contains all of thec points of S iff the sets of red
oil([ groeen points of S' am- carb by ia linc.

Proof: The dtICIOUS aCIC 0alogOuIs to Uhc proof for the two-dimensional

case. Simply replacc circle by phrscmicircle by hicilisphere, etc. 01

G
G

R
R G

0

G
R R. G

G

RG

Figure 6-3: Examiple of nonlselparihle sets of red and green points.
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We have jun;t reduced tic problemi of deter-nining if a set of spherical points lie in

a hemisphorc- to tlwi p~roblem of & cterminiivj if tv/o planar sets of points are

scparalblu by a straighlt fine. Shaml5s znd Hocay [0-1] present an 0(N log N) time

solution to thle pl sa ipcarability prohdiin. Thpy first make tile observation that two

planar sels; of points are separaile by ^. liii if' the conv, x hulls of the two sets are

separable by a linr. The convex ht;lks, aic sepirale iff their intersection is empty.

(See ringire G-k~p for an example of nonse.,parnble sets of points.) Since we can

construct thle two convex hull,, in 0(11 logj N) iUnc- ([448]) andl then intersect themt in

0(N) umore limo ([94]), we can dotcr;nhue sepiraibity of two planar sets of 0(N)

points in O(N log1 N) time. Since the Cinom~onic projcction of N spherical points to N

planar p~oints co:-;ts only 0(N) time, we have

Theorem 411: Given a set S of N spherical points, we can determine in
0(N log N) time whictlcr or not all N points of S can be fit into a
hierisplice.rical cap.

6.2.3. The For-Dinicn.-ionaI Cc=o

if S is a rset c-) N iioilc ot) i ou- n;a hypcrspherc, then inl 0(N log N) time

we can (Ic termine if the N p)oints of S can be Cncloscdl in a four-dimensional

hienisphericalI cap. The aflorithm is anflaoous to thle algorithm for the

threc-dimennmional an.We map) thle N spherical points to N red and green points in

ELIdeIPanl thr(:e-space: 1b, a (foujr-tdime-nsional) gjnomonic projection.ThN

hypersplierical points fit onl a henni-hypersphcrc iff thle red and green points are

separale by a plane. We can determine spparability of the red and green points in

0(N log N) time. The first stepI is to construct thle conIvex hUlls Of the red and green

points in O(N log N) time ([V03]), and then intersect the two convex hulls inl

0(N log N) time. We coin construct the intersection by the algorithm of Muller and

Preparato [73] or by any O(N log N) time algorithm for intersecting

(three-dinwinw-Jonal) half-spaces. If the inteirsection of thme two convex hulls is

empty, thf.n thle N hypcr.-;pheri:c;I points of S canl be enclosed by a

hemi-hyprnpmcricaml cap.
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6.3. Summary

This chaptor pi os*:nu; two c.(,miIrset of prolblcms and techniques. For the

approximate Nuicdan cliai-citer of a planw.r nct of points we have been interested in

a fast approxiiuote convcx hull ailc;itlmii. One opproach is to suIccessively use

rotation to approxima e tho Fuclick,!n trc obhi aiaing an O'N(I&')) time algorithml.

A faster alqloriti u can be obtained by a parti tioninig approach; in this case we used

wedgec-shapecd "pip-slimes" or '"bucketr,'" yin.lding an O(N + 1/t) time algorithm. This

algorithm avoidl:. an extra factor Of 0(k0nj 1 / ) by uIsig the floor function to drop

points into the appropriat ice.

To determine if there exists a hemisphere that contains all N of a given set of

spherical points we found it useful to aily a (Juorlionic projection. This is because

a hemisphere is- bounded by a gIreat circle and the gnononic projection maps great

circles on a sphere to lines in the Euclidrean plani. This enables uis to use a fast

planar algorithmn (separability of planar sets of points) to solve the spherical problem

in O(N log N) tlime. Siiilarly, N p)11 ilt oC( four1-d(;lcSional sphecre can be mapped to

Euclidean thrue-s;poce to obtain a prolbliiiu (scpnraibility of two three-dimensional

sets of points), which we can solve in 00N log N) time.
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7. Conclusion~

7.1. Transfornisinnd Tcchnic~cs

This the;i. prcvncnit; ai nowA c~riq for construiction of fast geometric

aljorithln3 -- thc tse of iU4cietric tionslurms. Althotigh mnany different kinds of

transforms, are% prwusenitec, 1msct fllI int~o one of two classes

1 .transformns to conv ;rt prohclnis tha~t are axprcesscc in terms of circles
or sphneres to prolem,; that arc expressc.d in termis of lines or planes,
and

2. tran.-Jormns to convrrt lprohlomr that aro cxprossccl in termis of flats to
problems that are ex;prciscdl in terms of points.

Transforms in the firnt class mnap points to points andl transforms in the second class

are duality transforms. In Appendix III we list the transforms used in this thesis,

their imp~ortant lprolpertics, and somne of their applications. In addition, Table 7-1

summarizes "typical uses" for four of the transforms that have been particularly

use ful.
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Projection (orthoclraphic or "radial"i)
Solve a K-climnnion.al problcm as a (K-i )-dimicnSional problem.
(Reducing dimnisioncity typicnl!y simplifies a problem.)

Embedding Solvv a K-dimnnnion a) prohieni as a (K+ 1 )-dimensional problem.
(1he extra d;,(ren of freedom can sometimes allow anl
interpretation of thle problcom which is not possible in K-space.)

Point /Flat Dulaly Solve a probcnin in1volvinI lats as a problem involving points. If
half-s-paces (rather than flats) are involved, then the
half-npaes na tiirally partition into two sets (UPPER and
L OWE:R) since, cach flat teinels two half-spaces.

Inversion (SternocIraphic P'rojection)
Converts, pro!iNmr involving circles (spheres) to problems
involvinq lines (planrc,). Since circles (spheres) are intimately
related to the Euclidcean metric, inversion may be useful in
lprohlcms involving the Euiclidean distance Letween p~oints.

Table 7-1: H-euristics for use of some transforms.

7.2. Nlow flosuls

In the preecllug chalpters we have presentcd scveral examnplcs of the use of

geometric tranformn. Some of thec nmaor rosuilts are-

- We relate the, Eticlide-an Voronoi dingrrnm of a set of points to tile
convex hull of a 1ransformed set of points, yielding an O(N log N) time
planar algorithm, which is optima-l to within a con.stanit factor.

- We trannform the prohicin of finding planes of support of a convex
polyhedron to the problem of finding all overlapping regions among two
straight-linc, planar graphs. This gives anl 0((N + K) log N) time and 0(N)
storage algorithm for compuiting thec Euclid':an diameter of a set of N
points ill tlrr:-spaere, where K is the numiber of pairs of antipodlal
vertices of the convex litll of thu N points.

- We relate the intersection of UPPER half-spaces to thle convex hull of
a finite set of points. This leads to anl OG.J log N) time algorithm for
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constuctioq the itr.c'n of N UPPER three-dimensional
ha I -zipocus, Wh ich i ; optimlal to wfiithin ii Cols tant lac tor. 2 0 We apply
the floor fti lion to obtcain cin OGJ + 1A/~) time algorithmn for
app roximo~titiq ILhe dioti~o kcr of N pl-.nor points to within a factor of
1 + (. (Thils and Benflicy, FaU St, and Prcparata's [7] O(N + 1A/) time
planar alfgorithim are the best know.n al~loritlwris for approximating the
Euclidlean diatueLer.)

-We transform the union of N planar disks to an intersection of N
tliree-dimeiizdozial half-spaces, yiodling an O(N log N) time algorithm for
cons trLIUe th uh nion of N planar disks.

-There are also a numher of minor but new results:

* Location of all arbi trary point in a sct of N plinar disks inIO(loq N) time with only O(N log 14) oreproecssing time and 0(N

storage (Section 3.2.5).V* 004 loq N) timec alnorithins, for cons'tructing clozsest and farthest
point Vorouo1i dia(.rniiii fo~r N4 spherical points and for the sides of
a convex N-non (SectioTs '1.2 and '1.3).

* Determining in O(IN log N) time whether N points on a
four-dimiensional spliere can be fift in a hemisphere (Section
6.2.3).

7.3. Open Problemas

There arn still several problems that remain unsolved. The list below describes

several of the' major ouitstanding probicnis.

-One of thn manjor ujns-olve!d problemis of this thcsis is to prove an
.Q(N lng N) timie lower bound for romlputing the Euclidean diameter of N
planar- points tinder a model of compuitation strong cnough to compute it
in O(N log N) time. (Appendix 11 describes an approach toward such a
proof.) Shamor. [02) conjectures that for any metric with a
continuusly-turning tangent the worst-cisse Iciwer bound is f2(N log N)
time.

20Thi,~ toit llhrmkiqh '.;nula~ to the v~c.k of anr~tz td ?,jI ' ~,FV oerdpfdft
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-What in thle c.xpCrrt(l numbor of ~isof antipodol vertices among N
three- dimrnf-ional proin~ (i(ncr ,ni/ ii tc;rPstUi i distribution of points)?
(I hir. dni-c, feistlic: nxpcctcd- I inn: of Ihe Cticlidean diameter
algorithm of Sctcion .. )

-For an approximato diaiiwtur vw: ond En.:,Faust, and Preparata
[7] IliVe, ',hoAnj 11n 0(N + 1 /( ) timk: upper hounid, but the lower bound
remains an openi (Itlestiofl.

-Thle "buck-I transfor-m" of We-ide's 0(N) expected-timec sort [99) has
already bee-n extended to 0(N) exictied-time planar Voronlol diagrams
b~y Bcrnti'y, Weide, and Yao [1 S]. rmc power of this transform derives
from Hie ti-, of the floor fun1CtO(A. Viost aloorithims and pi-Cofs for
lower l)ouid3 use model,, of cOMInpUttiOll that involve only comparisons
between analytic fLunCtionS or th-: input, but these results are
becominq dated as the floor function is applied to more problems.
Some othur noutable uses of the floor fLUnctionl are the linear-timle
lar ;cst gap alrjoriim or Gonzalcz [47], linear expected-time
closest-poinit alqorithms of Ykivao [104] and Rabin [U361, and
0(N log kl 14) wiorsi-casc time, closest.-piair alg~orithim of Fortune and
I Iopcrof t [41]. Toealgorithms pcrtition their problem into "buckets"
a11( uise [lie floor funlctionl to CO111npue Ic uickly for each point the bucket
into whiich it should be dropped. 'Ahot other uIsCs can we find for thle
floor function in geonmevric ak,,orithms?

-Thle algorillims for intor.;ection of hialf-spaccs, planar Euclidean Voronoi
diagramsn, spherrical Voronoi di1ag~ramm, ndc diamecter of a set of points
all wse~ the convex hull of a scet of points. (Also, thle algorithms that
involve. an iinmrs.tion of half-spmcs indlircctly usc convex hulls of
sets of points..) Shamos [91] descri~bes, how a convex hull is used in
isotonic regression and( Silverman and Titterington [96] use a convex
hull to find the smallest covering ellipse of a planar set of points.

Whtothr-r isers can be found for convcx hulls?

7.4. Conclusion

Trannformn are often us-eful for coovcrting apparently difficult problems to

instanccs of piulilemis thact are solvablo b~y w,.ell-known methocds.. !i this thesis we

have presented a set of techniciues for opp!ying g.,ometric transformis to geometric

problems that providt;3 anothewr sul% of tWol for the dIcsigncr of fast geometric
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algoriuhmt ;. Iurth rmoro, ini U1i prf,.-i:c; o" alustra.[jig the application of these
trannform-, to ,nvcul proh mr!, euw v, ot-i..(: several usefl and interesting

algorithms.
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Appcndix I
Fincdkv a Good Orier, Xtion for Flats

One Or the Major pl)bkns vitit rej~rczscnting lifles, Planes, or, in general, flats In

slope-intoercept form is thit vcrtlcal thits, cannot be represented and near-vertical

flats catise large round-off error. It vertical and near-vertical flats can be avoided,

however, the &lopc!-intercrjpt formt it. very convenient because of the properties of

the transform

K-i
XK aix + OK - (a,, a., *

as described iii Section 3.1. In this Loppendix wie describe how rotation of the flats

can help avoid the occurrence of vertical or near-vertical flats.

There arc two canes to consider:

(1) The rettricted case: If thn retation is being performed to enable an
intersection of N UPPERf half-spaces (as in Section 3.1), then we must
ensure that after rotation all N half-spaces remain UPPER half-spaces
(rather than LOWFR half -spices).

(2) The general cas-e: In general there is no restriction as in Case (1)

1.1. Case (1)

Since wec want to (deterine what ongjles to rotate the flats through, it will be

useful firnt to represent thc flats by their angles rather than slopes. Specifically,

we map) the slope-intercept representation to an ang/e-o -inclinat ion representation

by

K-i

XK tan(0,)x, + ax -* (01,0(2. K1

where 0( j [-rr/2, rrI2), j z1, . . .,K-i. In the following discussion a K-dimensional
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problem of fl.as will therefore be trcated as a K-i-dimansional problem of points. A
flat will be calln-cl near-vcrtical if orm of thc K - 1 corresponding angles ()I Is within

a given sinall angle ( of being vertical (ni/2 or -n1/2). We will also use the notation

i~jfor the jth coordinate (iingle) for the itli flat.

We want to find a rotation (q. I -02, *- 'K-i) suchi that

-rrI2+ :5 aj(i 5 r,/2 -(, foci= 1,I.N :1....,K-i. (33)

We can easily find such a rotation, if it exists, in O(KIN) time and storage. First

compute the iniaxiiium and minimum angles for all K - 1 coordinates

mamax ax~ and miii j m forjra 1, . .. K-1,

In O(KN) time nnd then determine if

If Condiltion (3/1) is Satisfirdc tlw~n a rotation satisfying Condition (33) exists. One

such rotation (f 1, 02, O"K- 0 is

j -(maxi + mini) /2. 1, 1. .. , K-1.

* It may not be ticcessary to dio any rotation at all; if

IrrW2 - maxj I~ Et anci I T/2 + mnini I ( for j a:1,. .K-1i35

then no rotation is reqired. The probability that Condition (35) is satisfied depends

4 on the probab~ility distribution of the Points (Oi I 0 i2, * ~ i,K-1i- If the density of

the distribution is uniform (and all points are independent) then Condition (35) will be

satisfied with probability

P( No rotation required z (r.. 2(-N(K-1)

Condition (34) (existence of a rotation satisfying Condition (33)) is satisfied with

r probability

P(rotation for Case (1) exists) a P(maxj-minj~ r t-2(-), 1, . . .,K-1

*P~maxi-min1 S fl..2f)K.
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- wndre

P(maxi-inin, S n-20) z T S~OX y..+2 d2  (X2Xi) I x x
z- - dx, d

a(1T..2()N + 2(N (T..21J

1.2. Cato (2)

If we allow arb~itrary rota Lions then thec K-i1 -dimecnsionial points (0 1,92. OK- eK1
may "wrap around" the boundlaries of the cube of angles [..T/2.r/2)Kl1. Whereas
the analysis of Case (1) required only computations related to the max's and min's
for each of the K - 1 coordinates (inccpendently), the analysis of Case (2) involves
the "largest great-circle-shaped gap" between N4 points on a K-dimensional sphere.

The mapping tho t we use is (almost) the point / flat duality of Zolnowsky E 10G]. A
flat Is first trunslated so that it is tangent to the unit sphere (centered at the

* origin) and the transform is the point of tangency. Since there are two
U (diiametrically opposite) points at which a flat of a giveni orientation can be tangent,

there are two pcnnibe p~oint., to whic.h a flat can map. 2 1 We can, of course,

describe thuisr transform in carLesian coordinaltcs, but when we wish to speak of the
angles of Inclination it will be more tiscful to use the mapping

K-1
* X cot(G,)xi K a + M- 02 (G . .. 1. (4-1).(8

*where tile Points (E0 I 412 .. (K-i) are interpreted to be normal geodesic

coorclinatCs of a K-i -diaictisional sphere. (Each K-i -tuple represents two

2 1We can also epircsi tse trar.;foem a s the pi'nt / flat duialy ofi Sction 3.1 followed try orthographic
projection to the plaries x. 21, reversiq~ the sign 0f ail coordinates, amd then granonec proection to the surf ace
ofth pe.-
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diametrically opposite points onl a sphere.) In each coordinate system this transform

maps each flat to a point on the unit sphere such that the vertical flats map to

points on the great circle 0i = / 2 , i= 1 ... , K-1 (or, in cartesian coordinates,

where the sphere intersects th" flat xK = 0). The near-vertical flats map to points

near this great circle. We will present an analysis for two and three dimensions.

1.2.1. Case (2) for Lines in a Plane

Lines in the plane transform by Equation (3(3) to points on the top half of the

circle x 2 + y2 = 1 and their diametrical opposites on the bottom half. A line L is

vertical iff it mapn to the points (xy) = (1,0) (E( 0) and (x,y) = (-1,0) e = r. L is

near-vertical iff it maps to points within an angle of (1,0) and (-1,0). There exists

a rotation of a set of lines S such that none are near-vertical iff there exists a

rotation of their corresponding points S' on the circle such that none are within an

angle ( or (1,0) or (-1,0). This occurs iff thure cxists a rotation of the points (1,0)

and (-1,0) such that they are not within an angle ( of any of the N points of S',

which occurs if f there exists a gap of at lcost 2( bctwcen adjacent points of S' on

the circle. W. can determine this in O(N) time by (a modification of) Gonzalez's

largest gap algorithn [47]. (It should be noted, howevcr, that Gonzalez's algorithm

uses the floor function. If only analytic functions are used, then the best known

algorithm for the largest gap )problem takes O(N log N) time.)

1.2.2. Casa (2) lor Planes in Threo-Space

Planes in three-space transform by Equation (36) to points on the top half of the

sphere x 2 + y 2 + 7 2 = 1 and their diametrical opposites on the bottom half. Vertical

planes map to points on the great circle 01 =02 =/ 2 (where the sphere

intersects the plane 7 = 0) and near-vertical planes lie within an angle ( of this

great circle. There exists a rotation for a set of planes S such that no plane is

near-vertical iff there exists a rotation for this great circle such that no point is

within an angle ( of any of the points of S'. Whereas in two dimensions we obtained

a problem that involvfd the (angular) distance between pairs of points on a circle, in
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three dimeirnsins we have a problem that involves the (anguLlar) distance between

points and a great circle on a sphere.

Searching for a qreat circle that SLdkiZ NeS our conditions seems more difficult than

searching for a point becausec a great circle is a nonlocal object. We can, however,

apply a poit / glreat circle duality to obtain an eqjuivalent point-searching problem.

The transform is simple;

spherical point 4 great circle farthest from the point, and
gjreat circle -- the two points farthest from the great circle.

Since thir. (huilty lrnsnrves the angular citance between a point and a great

circle, a spherical point P and a greait circic C are an angular distance of ( apart iff

their transformis arn ( apart. Our new problem is thus

Given N great circles on a sphere, find a point on the sphere that is not
within an angle ( of any of the great circles.

This problem) can lhe solved by tbhe s!pherical analog of a planar nearest line Voronoi

diagram. Unfortunately, since the N great circles partition thle sphere into e)(N 2)

regions this approach will take at least O2(tN2 ) time. In the worst case, it can take

longer to find a good orientation for a set of N planes than it takes to intersect N
thre-ciiienionl alf-spaces. If is sm.all compared to N, however, we might be

able to find a good orientation in O(N) expected-tiin-e.
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Appendix II
Relation of Dar;meter to Ermpy Intersection

In this appu.idix we describe a relitionship hetwecn the Euclidean diameter and

an empty intr.rnertion prohl:m that may lead to an (N log N) time lower bound for

the cliameter prohlem. The. empty intersection problem that we are interested in is a

variation of the problem of Reingold [87]:

Given two sets, P and 0, each of N reals in the interval [0,I),
determine if there exist p ( P and q ( 0 such that p = q.

We convert the empty inter-soction problem into a diameter problem by using

inversion (Section 3.2.3). The inversion transform is determined by two parameters,

the center of inversion and the radius of inversion. We shall choose the origin as

the center of inversion and let the radius of inversion be one. The transform is thus

(x,y) X (2y'2y)

For our purposees the: only important property of this transform is that it transforms a

line that doeS not pass through the orioin into a circle that does pass through the

origin. In particular, the line y 1 maps to a circle with radius 1/2 centered at the

point (0,1/2).

0
// ,. .9-

I I //

/ K'

/r/ I i t/l I I I I
/S I I / /

/I I I / j

/ I I,
, Ii I II ,/ /

/ , I l ,/ /

':I,'"~

/, ,. , ,,/ /

/ I, llQ
1 0

Figure 7-1: Mapping th~e points of sets P and 0 to a circle.
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Our construiction first maps the. N elemients of set P to poi'ks onl the line y =1 and

then applies iniversion to inlj) those points to points onl the circle

X2+ (y - 112)2 (1/2)2:

~~~ (p1 pP.
+ p2 1+ p2)

Note that since the elements of P are chosen from the set [0,1 ), all of tile N points

generated front P will lie within an arc of only one quarter of the circumference of

the circle. (Sen Figuire 7-1 .) Our transform for the elements of set 0, on the other

hand, generates points on at quarter-circle arc that is diamietrically opposite thle

points fromt snt P. More precisely, since vlo want to conlvert thle empty intersection

prob~lem to a diamleter probleim we choose the transform for the elements of set 0 so

that identicinl elements of sets P and Q w'ill be diametrically opposite onl the circle.

The transform for set 0 is thuIs

Since all of the elnrntr of sets P and 0) arn transformed to points onl a circle, the

maximumI11 j)0SSill cli0agajeter of thle 2N points is the diamctcr of the circle. This

maximuim is, achinve-d iff two of the 2N points are diametrically opposite, which

occurs if f there exists it 1) ( P and (I ( 0 such that 1) =cl. We have just proved

Theorrm /12: Cliven a model of co.Mpta"tionl Strong en1ough to support
the invpersion transform, we can transform an instance of the empty
interse-.ctirin probl(.m into ail N-point diameter probiem in 0(N) time.

To apply ouir lower hotind for tile empty intcrsection problem to thle diameter

problem, we musit prove the lower bound wi Uder a m-,odel of computation strong enough

to suipport our consituction for nolving the empty inlte;rsection problem as a diameter

problem. fleingold's fj(N logi N) lower bouind unfortuinately allowis only comparisons

with linear functions of the iniptlt, which is not strono cnou~gh for our purposes. One

model Of conipu td tlionl tha t is strong enouigh is a decision tree that allows only
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compctrisowi beCtween mutltivaria tf pol),'1011i,41S Of degree att most K (for somne fixed K

4) at internil niodes. It is important that UN- degree be bounded because

otherwise we could solve the empty intersection problem in constant time by making

the comparisons

N N

TI (1) - q J) 5 0 and IT(p, -q J) ! 0.

Comparisons ictwcen bounded dIcgrce poclynoial functions are Sufficiently strong

that we can support ouir conntruction foi- solvinig empty intersection as a diameter

problem.2 2  (rurthermore, vie can coiiirunct O(N log N) time diameter algorithms

under this inodel of roiuptidationi.) It rcn ar i open problem whether or not we can

prove an (.(N log N) time lower bouind for the cmpty intersection problem under this

model of computation.

221t may at fir:.t appe'ai tha~t vwe c.nnot cornutc the ir~'c.,.i,-n zransforrn of our construction~ with finite degree
polynomial functions bem.vje d inlvolves dwir.on. That is, in a strict sense, true, but we can Simula.'e it by
representing a q1iolierit p/(4 as, an owrtCed pair (p,q).
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Apicndix '8'
Geometric Tran.lorms a;d /pplicatiors

In thin alpl)e(ndix we stimmari'e the transforms aed in this thesis (or used for

geometric problems not described in this thesis) and list properties of and

applications for each. The transforms are collected into three categories:

Point-to-Point Transforms, Duality Transforms, and Miscellaneous Transforms.

11.1. Point-to-Point Transforms

Most of the point-to-point transforms fall into one of two classes; continuous

and invertibl transforms and projections. All continuous and invertible

transforms f are potontiafly applicable to union or intersection problems

because they satisfy

f(A U B) = f((A) U f(B) and f(A n B) f(A) i f (8).

Rotation

Prescrves size and shape while elterino orientation.

- Convert L.) diameter to L, diameter in the Euclidean plane (Section
2.6).

General linear transform

Maps linear quantities to linear quantities while stretching and rotating.

- Generaliz!s )rollems with rectilincarly oriented lines or line segments
to prol)lems with lines or line segments at two arbitrary angles
(15, 12].

- One-dimensional Johnson-Mchl crystal growth model [10] transforms to
two-(limensional maxima of vectors.

- Derivation of point / flat duality from inversion and a linear transform
(Section 3.3).

Orthograplhic projection

ii
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flcius clinww% ~ion'llil y by u.imin~aing one ot the carosian coordinates and

leavingj It- otho'rs unaiffected.

- Searchingr a Voronoi diatiram [8)(,, 33. 31I).

- Multi-fliIlin"ol oa (ljiilC-3fl!- conqtwr algrjoi uins that solve the merge
step of a K-dincwn ional problem as a K-1 -6imensional problem [3).

- Nearest (fartiiest) sidle (liagrafl of a convex polygon (Section 4.3).

- EuLICIRI10n (liamu(r of N points in three-space in 0((N + K) log N) time,

whiere K is tihe number of pairs of anilpodlal vertices on the convex hullI

- Three-dlimensional Chebyshcev rcgre.ssion (Scction 5.2.3).

- Leas t-sqtiarcs isotonic regression [9,1].

- Least S(ILnares regression.

Perspective tran.-formation

Lines map to lino~s iinr ptane. mop to planuns vhile preserving perspective

inforimaion. Maps K-climcnsional tays to l(-7-cimensional line segments.

-Transforms a pcrspnctivc 1projfection (visibility) problem to an
orthographic projiction p~roblemd [97].

Radial projection (ahout a point)

Preserves sphorical angle ovhile reducing dimensionality.

- Dual of spherical Voronoi Oiiroman (from convex hllI) (Section 4.2).

- Spherical Voroiioi diagramn (from intcrsection of halr-spaces) [22).

Gnomonic projection

A two-to-one transform that maps gru.at circlos onl a sphere to lines in the
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-Delernihe if N -ph'ricall poinU: can fit in a hemispherical cal) [105]

(Section G.2).

Stereogrijihic projecu tion

A conformal mappinj,. but it rcducus the sense of the angle.

- This is a .pecial care of inver.ion in three-space. (See inversion.)

Inversion

Inversion is a circular transform; \circlcs map to circles (whore a line is

considered to be a circle of infinite radius). In particular,

- A circle that pas.scs th/urh the center of inversion maps to a
line that doos, not pass through the center of inversion.

-The interior of a circho that contains the center of inversion
maps to the exterior of a circle that contains the center of
inversion.

- Other properti.s are dorlribed in [36].

- Union. intprsection, subtraction of disks (Section 3.2).

- Nearest (farthest) point Voronoi diagram (Section 4.1) (23].

- Nearest (farthst) ecdge cliagri,' (Section 4.3).

- Derivation of point / flat duality from inversion and linear transform
(Section 3.3).

- Mapping of Ioitits on a line to points on a circle in Appendix I1.

"Bucket" transform (floor function)

A discontinuous function but available as a primitive on most machines. Useful
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- 0(N) exIctecl-lime sort [no].

- 0(N) expoicted-tiue convex hull, Vuronoi diaornm [133].

- 0(N + 1 /() time (-approxiation for Eticlirhcan dliameter of points
(Section 6.1) [7].

Embedding into a higher immension

Adids a rlegjro of fror.-dkm to tho problom. Lioos can become planes, circles

Cal? become Spheres, etc.

- Union, inte~rse!ction, subtract'lon of clisks (Section 3.2).

- Nearest (farthiost) p~oint Euclidocan Vc'ronoi dliagram (Section 4.1 ).

- Nearest (forthest) Sidle dliagram of a convex polygon (Section 4.3).

- Lower hoi(Id for union (intcrsec.ion) of dlisks or half-planes (Section
3.2) or convex hull of points or tlinululation of a set of points
[91]. (Sort. N reals by mapping then to N planar points, N dlisks, or N
hal f-planIcs.

- E)(N log N) time algorithm for least-squarns 
isotonic regression C01].

111.2. Duali'ky Transforms

Useful rto tiinsJOI winu problems involin~g nonlocal objects (such as flats) to

problemns involving points.

N Points in 1 Space / 1 Point in N Space Duality

Trans foins an N point problonm into o ono point problem.

- Element-tiniquteness lower boundl [3)].

- Epsilon-closenerms lovier hound [A211.

- Lower bomus for sorting, innsertion, findling max with analytic functions



24 Decemhber 107. Geometric Transforms PAGE 139

[43].

Zolnow~ky's plalie / point on unit sphcre duality

- O(N log N) time itersection of N hialf-spaccs [106].

- Finfditic a good orientation for flats (Case (2) of Appcndix I.)

Plane I I lomouctncotis PMluckcrian coordii ate duality

A more homogennous rop s sntation of the point / flat duality below.

- O(N l(oj N) time intersection of NS half-,pOccs (34].

Slope IntercPept form of Point / Flat duality

Prcserves xA coordinate distance betweon a point and a flat, thereby

prrerving incidenr between points and flats. Preserves above/belowness

between points and flats.

-O(N log N) time inLtcrsection of N UPPER (or N LOWER) half-spaces
(Section 3.1).

* Close:;t (farth'-t) side of a convex polygon (Section 4.3).

* N Ioiiit,; on a hemnisplhelC:: intort;cction of half-spaces solution

(Section 6.2).

- Linear programming [28,].

- Iml)onsible threea-dimnnsional scenes (53].

- Diameter of N points in thrce-spacc in O((N + K) log N) time (Section
5.2).

- Leo st-nqunre, isotonic regresion (91].

- Three-dimensional Chebyshev regression (Section 5.2.3).
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- Four two-dimmensiOnal line( prohlomn: nnr of lines, intcrsection radius
of lines" inimal fspanning so( iet (if lines, cliomo~:ter of lines [21)

- Numbrr of (-xtr-.ranr pjoinis in intnrtipclion of N lines is linear [21)

Gencrali70(d (Slope-Interce-pt) Duality iraiisform

-Intersi-ction of H alf-K-Sparns (Section 3.1.5).

Circle / Point Durality

R felation bteninversnion, P'oint /Flat diality, and convex hulls
(Section 3..3).

Spherical Point (Plair) / Great Circle Dwality

Preserves spherical angle hctwoeen a point and ai great circle.

-O(N log N) time algori~hm fur spherical farthest line Voronoi dliagrami
[22).

111.3. Miscellaneous Transforms

Point to locus of a set of points transforms

- Diritizationi problem. Given N (liriti;,nd points, find the set of all lines
that haIve thalt digiti7at1ion [221.

- Inclusion of N points on a hecmisphere -- intersection of hialf-spaces
soltition: nach point transforms to the set of points from which it is
visible (in this cane a half-space). (See S-ction 4.2.)

- Transform polyhepdral obstacles to locuis of forbidden positions of a
ref erence point of the moving object [71)
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Polygon to ,itringj tranisform

- (N) time algorillim for similarity of polygons [72).

.. ... .
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